Matrix de contrastes em fatorial DBC com a função glht!

Prezados, bom dia! Tenho os seguintes dados: gnexpo <- structure(list(celula = structure(c(7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L), .Label = c("cd14il10", "cd14il12", "cd14TGFb", "cd14TNFa", "cd4il10", "cd4il17", "cd4il4", "cd4il6", "cd4infg", "cd8il10", "cd8il17", "cd8il4", "cd8il6", "cd8infg"), class = "factor"), tratamento = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L), .Label = c("sangue", "sangueesp", "sangueesplei", "sanguelei"), class = "factor"), sujeito = structure(c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L), .Label = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16"), class = "factor"), ybox = c(NA, -2.69292076130798, -1.7308938232588, -2.71897413664256, -2.52195729242333, -2.07143460646478, -2.28616618805722, -2.23934403380362, -1.5816386015359, -1.45531244494296, NA, -1.78763628106266, -1.78763628106266, NA, -1.67799460050211, -2.05420193782142, NA, -2.69292076130798, -2.00495057061834, NA, -2.52195729242333, -2.39220210880234, -2.02098207859771, -2.21718134741238, -2.20638335201612, NA, -1.90186608973923, -1.96640375569663, NA, NA, -2.17503854559032, -2.13546702289896, NA, -2.4374515925038, -2.37786948402795, NA, -4.34782608695652, -2.66817235203095, NA, -1.93700472646838, -2.39220210880234, NA, NA, NA, NA, NA, -2.19576462068308, -2.13546702289896, NA, NA, -2.17503854559032, -2.42197056348201, -2.22816571976642, -2.37786948402795, -1.95893989862709, -2.71897413664256, -1.67799460050211, -1.7308938232588, NA, NA, NA, -1.84893147202209, -1.84893147202209, -2.20638335201612, NA, 2.29386873816499, 1.01505310461186, 1.59806601020187, 1.70359042610938, 0.629371021625038, 1.89488135689716, 1.34173827270132, 1.97933615752285, 1.32950237522194, 1.80954049266222, 0.544292233915625, 2.58628244712855, 2.60920818919467, 1.96791029953215, 1.37792682396749, NA, 2.42730191595763, 0.918037037053, 1.43659188396698, 1.52650689488233, 0.780499053243246, 1.95064066159234, 1.35791699022796, 2.0629046336914, 1.93612722331712, 1.57334871090689, 0.402847055658559, 2.14819950257032, 2.60090083364325, 1.65670196502143, 1.43659188396698, NA, 2.10868691208822, 1.21518877022432, 1.1617541378147, 1.3376694301362, 0.610168122899425, 1.96504299434836, 1.3376694301362, 2.02991623442824, 1.15267768767035, 0.91276233665236, 0.177480055692309, 2.21231887578234, 1.79072828872115, 1.62934834431764, 1.40555319415085, NA, 2.0629046336914, 1.17527566321877, 1.36995100720572, 1.6702237928893, 0.262246858924378, 1.59455599161021, 1.44043274603715, -1.4953647932855, 1.05902858248096, 0.875334134463397, 0.114818592199316, 2.3745242548625, 2.31314212920843, 1.88592320743286, 1.42114242322365, -1.4953647932855, -2.71897413664256, -1.99707061963371, -4.34782608695652, -4.34782608695652, -2.06276388770908, -1.83626720563971, -1.80550931322309, -2.40689528336595, -2.31097837032429, -2.1853184563932, -1.7308938232588, -2.06276388770908, NA, -2.66817235203095, -2.13546702289896, NA, -2.69292076130798, -2.64458778082735, -2.40689528336595, -4.34782608695652, -2.08021732374643, -2.66817235203095, -2.71897413664256, -1.67799460050211, NA, -1.78763628106266, -1.99707061963371, NA, NA, -2.19576462068308, -2.28616618805722, NA, -2.71897413664256, -2.64458778082735, -2.69292076130798, -4.34782608695652, -4.34782608695652, -1.41703514811409, -2.06276388770908, -1.38036185998819, NA, -1.34514600593702, NA, -2.08021732374643, -1.24705599641255, -2.1853184563932, -2.46973767079137, NA, -2.45336438654387, -4.34782608695652, -4.34782608695652, -2.80686212698278, -2.40689528336595, -2.6220484374455, -2.71897413664256, -1.7308938232588, -2.07143460646478, -1.7308938232588, NA, NA, -2.08911542185436, -1.84893147202209, -2.15495397463673, NA, -2.22816571976642, -1.7308938232588, -2.66817235203095, -2.52195729242333, -1.53739362224875, -4.34782608695652, -2.01292026207036, -1.78763628106266, -2.52195729242333, -1.67799460050211, -1.7308938232588, -1.9739467612432, NA, -2.37786948402795, -1.34514600593702, NA, -1.95155330658925, -2.64458778082735, -1.78763628106266, -2.10727211374119, -1.94424216534924, -4.34782608695652, -2.69292076130798, -1.7308938232588, NA, -1.95155330658925, NA, NA, NA, NA, -1.7308938232588, NA, -2.08911542185436, -2.35020867465772, -2.06276388770908, -2.80686212698278, -2.21718134741238, -1.87492464519061, -2.08021732374643, -1.8618143278143, NA, NA, -2.22816571976642, NA, NA, -2.03739213457179, -1.83001441700635, NA, -0.675361229952281, -2.15495397463673, -1.86834047734623, -2.54052969919257, -2.21718134741238, -2.35020867465772, -2.08911542185436, -2.08021732374643, -2.10727211374119, -1.27859646831934, -1.38036185998819, -1.00235979040798, -1.00235979040798, -1.15837435544212, -2.15495397463673, NA, -4.34782608695652, -2.64458778082735, -4.34782608695652, -4.34782608695652, -4.34782608695652, -4.34782608695652, -2.4374515925038, -2.19576462068308, -2.50399662742379, NA, -2.2623152494604, -1.93700472646838, NA, -4.34782608695652, -2.25072434606231, NA, -4.34782608695652, -4.34782608695652, -2.69292076130798, -2.52195729242333, -2.39220210880234, -4.34782608695652, NA, -2.1853184563932, NA, NA, -2.37786948402795, NA, NA, -2.39220210880234, -2.71897413664256, NA, -4.34782608695652, -4.34782608695652, -2.69292076130798, -2.80686212698278, -2.66817235203095, -4.34782608695652, -4.34782608695652, -1.95893989862709, NA, NA, NA, -1.78763628106266, -1.83626720563971, -2.66817235203095, -2.27412592309772, NA, -2.40689528336595, -2.64458778082735, -2.71897413664256, -2.54052969919257, -2.19576462068308, -4.34782608695652, -4.34782608695652, -1.95893989862709, -1.95155330658925, NA, NA, NA, -4.34782608695652, -2.71897413664256, NA, NA, -0.846625250115866, -0.424146292887046, -1.05165266989135, -0.278371048130955, -1.24705599641255, -0.978598328138476, -0.978598328138476, -0.382587090747639, -0.623794941549055, NA, -0.410129619681842, -0.955384996473032, -1.5816386015359, -1.45531244494296, -0.711134555233659, NA, -1.4953647932855, -1.10354472792737, -0.558555816099048, -0.481958704693426, -0.846625250115866, -0.657903436683406, -0.542819523945636, -0.623794941549055, NA, -0.542819523945636, NA, -0.265954948927854, -0.910492044990005, -1.31126094846664, -0.846625250115866, NA, -2.32377374500676, -1.0267000794542, -0.888762381154637, -0.511985037199133, -0.290915281172533, -1.24705599641255, -1.38036185998819, -0.329348187317446, -0.182393356563792, -1.05165266989135, -0.193990047506904, -0.0932951673799442, -1.05165266989135, -1.18701626669498, -0.826177946574437, NA, -1.18701626669498, -0.867480330972702, -0.955384996473032, -0.558555816099048, -0.693101362150131, -0.806120545038559, -0.846625250115866, -0.481958704693426, -1.13056852939884, -1.07725416865755, -0.438332632355958, NA, -1.31126094846664, -1.05165266989135, -0.826177946574437, NA, -0.382587090747639, 0.0776462231901975, -0.316400590353713, NA, -0.729472182374671, -0.0825871589763347, NA, -0.125972397047986, -0.253664014288352, 0.0776462231901975, -0.424146292887046, NA, -0.316400590353713, NA, -0.0719684003695356, NA, -0.278371048130955, -0.159518997859581, 0.0198477924053798, 0.417635857120927, -0.607125627348296, 0.105622563120547, NA, 0.278588642396027, -0.675361229952281, 0.482353675529317, -0.496873898568359, NA, -0.438332632355958, -1.27859646831934, -0.410129619681842, NA, 0.150982355897241, -0.205696150863317, 0.212021636625242, 0.660835179222585, -0.826177946574437, -0.574513982772485, NA, -0.205696150863317, 0.410260691983402, -0.278371048130955, -0.303590729063761, NA, -0.369052612827179, -1.13056852939884, 0.114818592199316, NA, -0.452693434554865, -0.265954948927854, -0.217514069018959, 0.395394483699403, -0.193990047506904, 0.0198477924053798, NA, 0.0393981466797574, 0.15987295146349, 0.979995806626161, 0.721848977768072, 0.949319687828156, -0.496873898568359, -0.846625250115866, 0.310704279174891, -0.205696150863317, -1.67799460050211, -0.511985037199133, -1.41703514811409, -1.00235979040798, -0.452693434554865, -1.45531244494296, -0.806120545038559, -0.342436972562116, -0.382587090747639, NA, -1.24705599641255, -1.07725416865755, -1.21655441108309, -1.13056852939884, -1.00235979040798, -0.329348187317446, -1.21655441108309, -1.10354472792737, -1.7308938232588, -0.0825871589763347, -0.329348187317446, -0.955384996473032, -0.978598328138476, -0.748126323001209, -1.00235979040798, -0.303590729063761, -0.290915281172533, 0.245708807412923, -1.38036185998819, -1.24705599641255, -0.846625250115866, -0.786436366916452, -0.826177946574437, -0.786436366916452, -0.675361229952281, -0.978598328138476, -0.452693434554865, -1.0267000794542, -0.846625250115866, -0.496873898568359, -0.438332632355958, -0.527298140744417, -0.396278019492523, -0.0201558427538927, -1.13056852939884, -1.34514600593702, -1.27859646831934, -0.396278019492523, -0.657903436683406, -0.867480330972702, -1.13056852939884, -0.786436366916452, -0.693101362150131, -0.910492044990005, -1.5816386015359, -0.806120545038559, -0.978598328138476, NA, -0.452693434554865, -0.729472182374671, -1.07725416865755, -1.4953647932855, -1.07725416865755, -0.0614371998817261, -1.34514600593702, -1.07725416865755, -1.27859646831934, -1.10354472792737, -0.527298140744417, -1.27859646831934, -0.438332632355958, -0.867480330972702, -0.355670536085818, 0.114818592199316, -0.424146292887046, -0.452693434554865, -1.5816386015359, -1.67799460050211, -1.41703514811409, NA, -1.13056852939884, -1.13056852939884, -1.07725416865755, -1.45531244494296, -0.748126323001209, -1.07725416865755, -1.45531244494296, -0.711134555233659, -0.767109823860092, -0.657903436683406, -1.07725416865755, -0.826177946574437, -0.978598328138476, -1.24705599641255, -0.888762381154637, -0.0825871589763347, -1.15837435544212, -1.18701626669498, -0.607125627348296, -0.711134555233659, -0.290915281172533, -0.558555816099048, -0.867480330972702, -0.452693434554865, -0.452693434554865, -0.806120545038559, -1.21655441108309, -0.316400590353713, -0.888762381154637, -1.88156803086095, NA, NA, -0.826177946574437, -1.13056852939884, -0.496873898568359, -0.542819523945636, -0.623794941549055, -0.826177946574437, -1.53739362224875, -0.888762381154637, -0.438332632355958, -0.623794941549055, -0.558555816099048, -0.159518997859581, -0.978598328138476, -0.888762381154637, -0.303590729063761, -0.675361229952281, -0.693101362150131, -1.0267000794542, -1.07725416865755, -1.15837435544212, -1.45531244494296, -0.767109823860092, -0.303590729063761, -0.607125627348296, -0.693101362150131, NA, -0.438332632355958, -0.382587090747639, -1.31126094846664, -1.7308938232588, -1.45531244494296, -0.438332632355958, -1.34514600593702, -1.78763628106266, -0.846625250115866, -0.786436366916452, -1.05165266989135, -1.05165266989135, -1.24705599641255, -0.481958704693426, -0.511985037199133, 0.0490649462655013, -0.675361229952281, NA, -0.955384996473032, -1.4953647932855, -0.342436972562116, -0.382587090747639, -0.767109823860092, -1.34514600593702, -0.253664014288352, -0.806120545038559, -1.24705599641255, -1.41703514811409, -1.07725416865755, -0.511985037199133, NA, -0.590701349454554, -0.0201558427538927, -0.104094168973296, -1.05165266989135, -1.45531244494296, -1.62838825505761, -0.0406309528360936, -0.329348187317446, -1.45531244494296, -1.07725416865755, -1.00235979040798, -1.10354472792737, -0.748126323001209, -1.27859646831934, -0.511985037199133, 0.150982355897241, -0.382587090747639, -0.396278019492523, -1.31126094846664, -1.34514600593702, -1.15837435544212, -0.729472182374671, NA, 1.7167663207627, 2.43634147030751, 0.245708807412923, 1.15267768767035, 0.365185236456101, 0.517089544114438, 0.73376127136365, 1.59806601020187, 0.679400605803935, 0.791963538514193, 1.72004536647892, 1.79702046385978, 0.424973006905875, 0.721848977768072, 1.92150068931436, -0.640717861878449, -0.104094168973296, NA, NA, NA, -0.170903755458391, -1.24705599641255, NA, NA, 0.30274478985439, 0.00996172558875369, -0.137055389065604, 0.349834251678161, -0.253664014288352, 0.544292233915625, 0.286687590134947, NA, -0.767109823860092, 0.133022612878126, -0.424146292887046, -0.170903755458391, -0.0406309528360936, 1.34173827270132, 0.342095353591695, 0.523937993488919, 1.34173827270132, 0.133022612878126, -0.0509919154844358, -0.278371048130955, NA, 1.97648616730155, 1.88592320743286, 1.25844070072036, 0.902159500232335, 0.0963625187904701, 1.35388670327868, 0.564366845252007, -1.24705599641255, 0.757309220404252, 1.24558240333043, 0.853536835529698, -1.18701626669498, 0.286687590134947, 0.150982355897241, 0.446760797795615, -0.253664014288352, -0.826177946574437, 1.70689340655833, 0.387902502823721, 2.58628244712855, 2.49194504353092, 1.57690093891415, 2.901014602786, 0.0776462231901975, 0.310704279174891, 2.72805294137269, -0.481958704693426, -0.104094168973296, -0.0201558427538927, 0.32648803558755, 0.0296595084509125, -0.867480330972702, 1.32540405417028, -0.217514069018959, NA, -0.496873898568359, 2.00479472433388, 1.84659785469478, 1.94194605742328, -0.205696150863317, -0.748126323001209, 0.310704279174891, 0.660835179222585, 0.475305203762996, -0.329348187317446, 0.654595194602954, -0.170903755458391, -0.410129619681842, 1.81576868042314, 0.836985867234145, 0.0296595084509125, -0.511985037199133, -0.396278019492523, NA, 0.168705227406102, -0.342436972562116, -0.438332632355958, -0.452693434554865, NA, -1.10354472792737, -0.910492044990005, 0.446760797795615, 0.0198477924053798, NA, NA, NA, 0.622997622202259, -0.137055389065604, 0.294739430916844, 0.262246858924378, -0.114985961040159, 0.105622563120547, 0.203468274579351, 0.0963625187904701, -0.590701349454554, -1.7308938232588, -0.481958704693426, NA, -0.290915281172533, 0.212021636625242, NA, NA, 2.23489664779158, 2.75336054283323, 2.93328701678478, 1.82507164076158, NA, 1.75251413217418, 2.12986067381282, 2.13511807776368, 2.58837711038031, 1.70359042610938, 1.2369549109739, 0.446760797795615, 0.791963538514193, 0.954473759568006, 1.33359081568175, 1.21956483123272, 2.49851667302163, 2.48535220761645, 2.48974979559189, 3.16770417289536, 2.89377723669538, 1.83740303366685, 0.831429364687842, 2.07918795894332, -0.0719684003695356, 2.21484038563627, 1.35388670327868, 0.745580804308699, 2.26705821548107, 1.43274246477897, 0.803343047103057, 1.20640191321435, 2.33697431241692, 1.34984685630819, 2.68051900094631, 2.00479472433388, 1.94774692527104, 1.19756827033542, 0.597226509378741, 2.47873800731025, 2.29386873816499, 0.809001384770533, 1.28806529107744, 0.73376127136365, 1.49704766870529, NA, 1.07819479726929, 1.4250177788916, 1.84353799187812, NA, 1.68364466583674, 1.32540405417028, 1.93321102883982, -0.396278019492523, 0.557705833690471, 1.83432789943533, 0.212021636625242, 0.709842232833092, 1.43274246477897, NA, 1.19756827033542, 1.39770525114091, 1.65670196502143, 1.76534118794863, NA, 0.453950279688335, 2.17667216064136, 1.78757408686753, NA, 1.63965502207382, 1.56264900151517, 1.17975830926739, 1.60156910558301, 1.22828256682037, 0.32648803558755, 0.703802899501406, 1.55906797859696, 1.47085674653963, 1.30891085553319, 0.721848977768072, 2.52243371930239, 2.23240078706643, 2.04097581379485, 2.56944838544469, 1.86182177231003, 0.123951614253518, -0.125972397047986, 1.31304925442411, 1.02984564759017, 1.1572221751824, 1.46708280045183, 0.721848977768072, 1.01009176362354, 1.96504299434836, 1.26695835965958, 0.523937993488919, NA, 0.853536835529698, 2.22238551779573, 2.06834779093892, 2.78791091530525, 0.349834251678161, -0.329348187317446, 1.84659785469478, 1.27120101787992, 0.503295005047169, 1.36193776900057, 0.482353675529317, 0.584170503622459, NA, 1.44426509458991, NA, NA, 1.70028139904404, 1.67694674039951, 1.5301547136733, 2.24980568722757, 0.380370630683735, 0.372798375628128, 2.19202902290734, 0.439535041984402, -0.0509919154844358, 0.622997622202259, NA, -0.657903436683406, 1.82507164076158, -0.0932951673799442, 1.07819479726929), celtrat = structure(c(7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 35L, 35L, 35L, 35L, 35L, 35L, 35L, 35L, 35L, 35L, 35L, 35L, 35L, 35L, 35L, 35L, 49L, 49L, 49L, 49L, 49L, 49L, 49L, 49L, 49L, 49L, 49L, 49L, 49L, 49L, 49L, 49L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 36L, 36L, 36L, 36L, 36L, 36L, 36L, 36L, 36L, 36L, 36L, 36L, 36L, 36L, 36L, 36L, 50L, 50L, 50L, 50L, 50L, 50L, 50L, 50L, 50L, 50L, 50L, 50L, 50L, 50L, 50L, 50L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, 47L, 47L, 47L, 47L, 47L, 47L, 47L, 47L, 47L, 47L, 47L, 47L, 47L, 47L, 47L, 47L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 34L, 34L, 34L, 34L, 34L, 34L, 34L, 34L, 34L, 34L, 34L, 34L, 34L, 34L, 34L, 34L, 48L, 48L, 48L, 48L, 48L, 48L, 48L, 48L, 48L, 48L, 48L, 48L, 48L, 48L, 48L, 48L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 51L, 51L, 51L, 51L, 51L, 51L, 51L, 51L, 51L, 51L, 51L, 51L, 51L, 51L, 51L, 51L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 54L, 54L, 54L, 54L, 54L, 54L, 54L, 54L, 54L, 54L, 54L, 54L, 54L, 54L, 54L, 54L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 55L, 55L, 55L, 55L, 55L, 55L, 55L, 55L, 55L, 55L, 55L, 55L, 55L, 55L, 55L, 55L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 38L, 38L, 38L, 38L, 38L, 38L, 38L, 38L, 38L, 38L, 38L, 38L, 38L, 38L, 38L, 38L, 52L, 52L, 52L, 52L, 52L, 52L, 52L, 52L, 52L, 52L, 52L, 52L, 52L, 52L, 52L, 52L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 53L, 53L, 53L, 53L, 53L, 53L, 53L, 53L, 53L, 53L, 53L, 53L, 53L, 53L, 53L, 53L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 42L, 42L, 42L, 42L, 42L, 42L, 42L, 42L, 42L, 42L, 42L, 42L, 42L, 42L, 42L, 42L, 56L, 56L, 56L, 56L, 56L, 56L, 56L, 56L, 56L, 56L, 56L, 56L, 56L, 56L, 56L, 56L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 44L, 44L, 44L, 44L, 44L, 44L, 44L, 44L, 44L, 44L, 44L, 44L, 44L, 44L, 44L, 44L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 45L, 45L, 45L, 45L, 45L, 45L, 45L, 45L, 45L, 45L, 45L, 45L, 45L, 45L, 45L, 45L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 32L, 32L, 32L, 32L, 32L, 32L, 32L, 32L, 32L, 32L, 32L, 32L, 32L, 32L, 32L, 32L, 46L, 46L, 46L, 46L, 46L, 46L, 46L, 46L, 46L, 46L, 46L, 46L, 46L, 46L, 46L, 46L), .Label = c("cd14il10sangue", "cd14il12sangue", "cd14TGFbsangue", "cd14TNFasangue", "cd4il10sangue", "cd4il17sangue", "cd4il4sangue", "cd4il6sangue", "cd4infgsangue", "cd8il10sangue", "cd8il17sangue", "cd8il4sangue", "cd8il6sangue", "cd8infgsangue", "cd14il10sangueesp", "cd14il12sangueesp", "cd14TGFbsangueesp", "cd14TNFasangueesp", "cd4il10sangueesp", "cd4il17sangueesp", "cd4il4sangueesp", "cd4il6sangueesp", "cd4infgsangueesp", "cd8il10sangueesp", "cd8il17sangueesp", "cd8il4sangueesp", "cd8il6sangueesp", "cd8infgsangueesp", "cd14il10sangueesplei", "cd14il12sangueesplei", "cd14TGFbsangueesplei", "cd14TNFasangueesplei", "cd4il10sangueesplei", "cd4il17sangueesplei", "cd4il4sangueesplei", "cd4il6sangueesplei", "cd4infgsangueesplei", "cd8il10sangueesplei", "cd8il17sangueesplei", "cd8il4sangueesplei", "cd8il6sangueesplei", "cd8infgsangueesplei", "cd14il10sanguelei", "cd14il12sanguelei", "cd14TGFbsanguelei", "cd14TNFasanguelei", "cd4il10sanguelei", "cd4il17sanguelei", "cd4il4sanguelei", "cd4il6sanguelei", "cd4infgsanguelei", "cd8il10sanguelei", "cd8il17sanguelei", "cd8il4sanguelei", "cd8il6sanguelei", "cd8infgsanguelei"), class = "factor")), .Names = c("celula", "tratamento", "sujeito", "ybox", "celtrat"), class = "data.frame", row.names = 225:1120) modnexp1 <- lm(ybox ~ sujeito + celula*tratamento, gnexpo) tabanovn <- Anova(modnexp1,type='III') library(phia) inter <- testInteractions(modnexp1, fixed='celula',across='tratamento') library(multcomp) Tukey <- contrMat(with(gnexpo,tapply(ybox,tratamento,function(x)length(na.omit(x)))), "Tukey")#Acredito que a glht esteja equivocada ao montar os contrastes com dados desbalanceados de acordo com que tem na literatura. Mais ok!!! K1 <- cbind(Tukey, matrix(0, nrow = nrow(Tukey), ncol = ncol(Tukey))) rownames(K1) <- paste(levels(gnexpo$celula)[1], rownames(K1), sep = ":") K2 <- cbind(matrix(0, nrow = nrow(Tukey), ncol = ncol(Tukey)), Tukey) rownames(K2) <- paste(levels(gnexpo$celula)[2], rownames(K2), sep = ":") k1 <- rbind(K1,K2) K <- cbind(matrix(0,nrow(k1),ncol=16), k1, matrix(0,nrow(k1),ncol=47)) colnames(K) <- c(rep('nada',16), rep(colnames(Tukey),2), rep('nada',47)) # Minha dúvida é se de fato a matrix K está montada adequadamente! comp <- lm(ybox ~ sujeito + celtrat-1, gnexpo) rescompe <- glht(comp, linfct=K) rescomp1e <- summary(rescompe) Desde já grato!

Ivan, Você forneceu todo o código necessário para reprodução da sua dúvida mas não deu as informações suficientes com relação ao experimento, etc. Na possibilidade de fracassar com tantas suposições à respeito do que não foi dito, eu adaptei código de scripts que eu já tinha sobre desdobramento de interação com a glht() Bem, um ponto é que desbalanceado ou não, os coeficientes considerados para as médias ajustadas (e os contrates) são os mesmos. O desbalanceamento já é considerado no tamanho dos erros padrões dos efeitos, onde àqueles de erro padrão menor são efeitos com mais repetições, nesse caso. Existe outros tipos de "ponderação" para obter essas médias, mas só use se realmente você se sentir convencido da necessidade ou motivado por algum artigo (e não documentação de $oftware$). ##------------------------------------------- ## As coisas ficam mais fáceis quando se compreende a estrutura ## experimental. xtabs(~sujeito, data=gnexpo) xtabs(~celula+tratamento, data=gnexpo) ftable(xtabs(~celula+tratamento+sujeito, data=gnexpo)) sum(!complete.cases(gnexpo)) ## Distribuição dos casos perdidos. addmargins( with(gnexpo, tapply(ybox, list(celula, tratamento), FUN=function(x){ sum(is.na(x)) }))) m0 <- lm(ybox~sujeito+celula*tratamento, data=gnexpo) par(mfrow=c(2,2)); plot(m0); layout(1) drop1(m0, scope=.~., test="F") ## Exista desbalanceamento. Será que todos os efeitos foram estimados? sum(is.na(coef(m0)))==0 ##------------------------------------------- ## Estudo da interação. Contrastes entre níveis de tratamento separado ## por níveis de célula. library(doBy) ## Médias ajustadas para o efeito de sujeito. lsm <- LSmeans(m0, effect=c("tratamento", "celula")) lsm L <- by(data=lsm$K, INDICES=lsm$grid$celula, FUN=as.matrix) str(L) ## Contrastes de Tukey significa todos contra todos (all pairwise). Com ## 4 níveis são 6 constrastes 2 a 2. x <- L[[1]] str(x) ## Veja outra versão em: ## http://git.leg.ufpr.br/leg/legTools/blob/master/R/apcMatrix.R apcMatrix <- function(x){ ## --- All Pairwise Contrasts Matrix --- ## x: é uma matriz onde cada linha assumesse ter os coeficientes ## para estimar uma média (ou qualquer outra função linear dos ## parâmetros). Ela returna a matriz com as funções lineares, em ## cada linha, representando cada contraste. cbn <- combn(x=nrow(x), m=2) K <- apply(cbn, MARGIN=2, FUN=function(l){ x[l[1], ]-x[l[2], ] }) return(t(K)) } K <- lapply(L, FUN=apcMatrix) ## Abordagem A: Testes separados por celula. Cada um deles tem cobertura ## nominal das 6 hipóteses que é de 95% (default). lapply(K, FUN=function(l){ summary(glht(m0, linfct=l), test=adjusted(type="fdr")) }) KK <- do.call(rbind, K) nrow(KK) ## Abordagem B: testes todos juntos. Nivel global geral de 95%. summary(glht(m0, linfct=KK), test=adjusted(type="fdr")) ## Para ficar mais fácil de identificar os contrastes, é necessário ## atribuir rownames. O seu CMR foi fundamental para aplicar uma solução para os seus dados. Porém, conhecendo os seus recursos, você poderia ter hospedado os dados na sua página pessoal (diretório na nuvem), pasta pública do dropbox ou repositório no GithHub. Com isso incluiria apenas o link para leitura dos dados dentro do read.table() poupando espaço na mensagem. Mensagens com corpo grande são descartadas pelo serviço de lista. Me espantou que a sua passou, então procure sempre evitar. À disposição. Walmes.
participantes (2)
-
Ivan Bezerra Allaman
-
Walmes Zeviani