Marcos,

Você já pensou em utilizar modelo linear bi-segmentado? Se for uma bobagem muito grande, perdoe-me.

Luiz Roberto Martins Pinto
Prof. Pleno/DCET/UESC
Laboratório de Estatística Computacional
Universidade Estadual de Santa Cruz
Ilhéus-Bahia-Brasil

luizroberto.uesc@gmail.com
skype: lrmpinto

"The science exists because there are patterns. 
 The patterns exist because God created them.
 The statistic exists to research the patterns that God created."



Em 7 de fevereiro de 2017 20:14, Marcos Bissoli via R-br <r-br@listas.c3sl.ufpr.br> escreveu:
Prezados,

De antemão peço desculpas se desvio o tópico da lista. Mas creio que o tema da mensagem é minimamente transversal aos aqui tratados.

Tenho uma variável resposta binária. Como a frequência da resposta é alta (38,11%), teóricos da Estatística aplicada à Epidemiologia sugerem que não seja usada uma regressão logística. Neste caso (de alta prevalência do desfecho), a primeira opção deveria ser uma log-binomial. Mas (e isso não é raro de ocorrer), minha log-binomial não apresentou convergência.

Quando não há convergência, os teóricos sugerem uma regressão de Poisson com variância robusta. Entretanto, como meus dados sugerem subdispersão, optei por um modelo de quasi-poisson. Isso já deu certo em outras análises que fiz para terceiros. Inclusive, tenho conseguido adaptar a variância robusta ao modelo de quasi-poisson. Mas justamente agora, com os dados de minha tese...

O diagnóstico visual está, ao meu ver, péssimo, para ajuste. A imagem anexa é do modelo de quasi-poisson. Mas experimentei todos os acima citados (logística e Poisson) e o gráfico não diferiu muito.

Imagem inline 1

A dúvida é... Há alguma outra alternativa de técnica de regressão que eu poderia tentar? Minhas variáveis explicativas são diversas, em quantidade e tipo (há contínuas, ordinais e binárias). Ou será (embora eu ache pouco provável) que este gráfico não significa um grande incômodo?

Fiz o teste de qui-quadrado da deviance residual e estranhamente o valor p está resultando em 1, tanto para Poisson quanto para quasi-Poisson. Um outro fato estranho é o pseudo R² de Nagelkerke ter acusado 20%: todas as outras minhas variáveis resposta não passaram de 12%. Não sei se é correto (consultei bibliografia que sugeria isso para a regressão logística), mas apliquei um teste de Hosmer e Lemeshow e ele acusou um bom ajuste do modelo, também (p = 0,2718). Até uma curva de ROC eu fiz e a área está grande no gráfico (mais uma técnica que não sei se deve ser aplicada além da regressão logística,).

Seguem alguns resultados, caso possa ajudar em algo.

Desde já agradeço qualquer comentário. E reforço minhas desculpas caso eu tenha desviado do tópico além do esperado, e desde já acato qualquer negativa em prosseguir o debate. Nesse caso, se possível, aceitaria sugestões de boas listas para debates nesse nível onde eu pudesse me inscrever.

Há braços,

Marcos Bissoli
Faculdade de Nutrição
Unifal-MG

> Mod1 <- glm(Tabagismo~.,data = TabModelagem,family = quasipoisson)
> summary(Mod1)

Call:
glm(formula = Tabagismo ~ ., family = quasipoisson, data = TabModelagem)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.4867  -0.7821  -0.5889   0.5349   1.6624  

Coefficients:
                                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)                     -1.245e+00  8.738e-01  -1.424 0.154644    
factor.SexoDic.1                 5.800e-01  8.273e-02   7.011 4.11e-12 ***
factor.Branca.1                 -8.332e-01  7.836e-01  -1.063 0.287863    
factor.Negra.1                  -8.210e-01  7.987e-01  -1.028 0.304185    
factor.Parda.1                  -9.009e-01  7.863e-01  -1.146 0.252163    
factor.Amarela.1                -1.089e+00  8.481e-01  -1.284 0.199466    
factor.SemReligiao.1            -9.670e-02  1.888e-01  -0.512 0.608566    
factor.Catolica.1               -4.813e-01  1.862e-01  -2.585 0.009863 ** 
factor.Espirita.1               -1.235e-01  2.181e-01  -0.566 0.571230    
factor.Evangelica.1             -9.177e-01  2.429e-01  -3.779 0.000166 ***
factor.AfroBrasileira.1          6.068e-01  4.303e-01   1.410 0.158794    
factor.Turno.1                   1.534e-03  1.034e-01   0.015 0.988169    
factor.Aposentado.1             -4.516e-02  1.055e-01  -0.428 0.668597    
factor.OcupaEstDiApenasDesemp.1  7.249e-02  1.411e-01   0.514 0.607474    
factor.ComFamilia.1             -4.323e-01  2.128e-01  -2.031 0.042444 *  
factor.ComOutParentes.1         -5.029e-01  3.517e-01  -1.430 0.153011    
factor.Republica.1               8.985e-03  1.959e-01   0.046 0.963429    
factor.Sozinho.1                -2.475e-01  2.236e-01  -1.107 0.268673    
factor.Pensao.1                 -8.439e-01  4.000e-01  -2.110 0.035106 *  
factor.OutroMoradia.1           -5.262e-01  3.353e-01  -1.569 0.116880    
factor.RU.1                     -1.937e-01  1.059e-01  -1.830 0.067589 .  
factor.praec4.1                 -1.583e-01  2.666e-01  -0.594 0.552951    
IdadeA                           3.787e-02  9.381e-03   4.037 5.79e-05 ***
escola                           8.576e-02  3.441e-02   2.492 0.012836 *  
RendaPC                          4.045e-05  1.313e-05   3.080 0.002119 ** 
Dist                             2.605e-05  1.296e-04   0.201 0.840689    
PraecSoma                        2.419e-02  3.086e-02   0.784 0.433427    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for quasipoisson family taken to be 0.6036898)

    Null deviance: 834.67  on 1135  degrees of freedom
Residual deviance: 706.16  on 1109  degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 5



-- 
MARCOS BISSOLI

Faculdade de Nutrição
Universidade Federal de Alfenas

Blog: bocademiamaldita.blogspot.com/
E-mail: mbissoli@gmail.com
Twitter: #mbissoli

Alfenas, Minas Gerais, Brasil


*****Pense na Natureza antes de Imprimir*****
Divulgue ON-LINE

Eu apoio a ENEN "na luta por um Brasil sem fome"

"por ĉiu popolo ties propran lingvon, por ĉiuj popoloj la esperantan"
(para cada povo sua própria língua, para todos os povos o Esperanto)

E nunca votarei no PSDB/DEM!

_______________________________________________
R-br mailing list
R-br@listas.c3sl.ufpr.br
https://listas.inf.ufpr.br/cgi-bin/mailman/listinfo/r-br
Leia o guia de postagem (http://www.leg.ufpr.br/r-br-guia) e forneça código mínimo reproduzível.