
1

Using R for Data Analysis and Graphics

An Introduction

J H Maindonald

Statistical Consulting Unit of the Graduate School,
Australian National University.

©J. H. Maindonald 2001. A licence is granted for personal study and classroom use. Redistribution
in any other form is prohibited.

Languages shape the way we think, and determine what we can think about (Benjamin Whorf.).

25 June 2001

2

t ail
lengt h

60 65 70 75

32
34

36
38

40
42

60
65

70
75

fo o t
len gt h

32 36 40

ear conch
len gt h

40
45

50
55

4 0 45 50 55

Cam barville
Bellbird

W hian W hian
Byrangery

Conondale
Allyn River

Bulburin

fem ale m ale

Lindenmayer, D. B., Viggers, K. L., Cunningham, R. B., and Donnelly, C. F. : Morphological
variation among populations of the mountain brushtail possum, trichosurus caninus Ogibly
(Phalangeridae:Marsupialia). Australian Journal of Zoology 43: 449-459, 1995.

possum n. 1 Any of many chiefly herbivorous, long-tailed, tree-dwelling, mainly Australian marsupials,
some of which are gliding animals (e.g. brush-tailed possum, flying possum). 2 a mildly scornful term
for a person. 3 an affectionate mode of address.

From the Australian Oxford Paperback Dictionary, 2nd ed, 1996.

i

Contents
Introduction ..1

1. Starting Up..3
1.1 Getting started under Windows ..3
1.2 Using the Console (or Command Line) Window ..5
1.3 A Short R Session..5
1.4 Further Notational Details ...7
1.5 On-line Help ...7
1.6 Exercise ..8

2. An Overview of R ...9
2.1 The Uses of R..9
2.2 The Look and Feel of R...11
2.3 R Objects ..12
*2.4 Looping...12
2.5 R Functions...13
2.6 Vectors..14
2.7 Data Frames...16
2.8 Common Useful Functions ...18
2.9 Making Tables ..19
2.10 The R Directory Structure ..19
2.11 More Detailed Information...20
2.11 Exercises...20

3. Plotting ..21
3.1 plot () and allied functions..21
3.2 Fine control – Parameter settings ..22
3.3 Adding points, lines and text...23
3.4 Identification and Location on the Figure Region ...25
3.5 Plots that show the distribution of data values...26
3.6 Other Useful Plotting Functions...29
3.7 Plotting Mathematical Symbols..31
3.8 Guidelines for Graphs ..31
3.9 Exercises...32
3.10 References...33

4. Lattice graphics, and coplot() ..35
4.1 Examples that Present Panels of Scatterplots – Using xyplot() ...35
4.2 Using coplot() ..37
4.3 Exercises...37

ii

5. Linear (Multiple Regression) Models and Analysis of Variance ..39
5.1 The Model Formula in Straight Line Regression ...39
5.2 Regression Objects ...40
5.3 Model Formulae, and the X Matrix ..41
5.4 Multiple Linear Regression Models..43
5.5 Polynomial and Spline Regression ...45
5.6 Using Factors in R Models ...48
5.7 Multiple Lines – Different Regression Lines for Different Species...51
5.8 aov models (Analysis of Variance) ...52
5.9 Exercises...54
5.10 References...55

6. Multivariate and Tree-Based Methods...57
6.1 Multivariate EDA, and Principal Components Analysis ..57
6.2 Cluster Analysis ..58
6.3 Discriminant Analysis...58
6.4 Decision Tree models (Tree-based models)..60
6.5 Exercises...60
6.6 References...60

*7. R Data Structures ...63
7.1 Vectors..63
7.2 Missing Values..63
7.3 Data frames ..64
7.4 Data Entry ..65
7.5 Factors and Ordered Factors...67
7.6 Ordered Factors ...68
7.7 Lists...68
*7.8 Matrices and Arrays ...69
7.9 Different Types of Attachments...70
7.10 Exercises...70

8. Useful Functions ...73
8.1 Confidence Intervals and Tests...73
8.2 Matching and Ordering ..73
8.3 String Functions ...73
8.4 Application of a Function to the Columns of an Array or Data Frame..74
*8.5 tapply() ...74
8.6 Splitting Vectors and Data Frames Down into Lists – split() ...76
*8.7 Merging Data Frames ..76
8.8 Dates...76

iii

8.9 Exercises...77

9. Writing Functions and other Code..79
9.1 Syntax and Semantics ...79
9.2 Issues for the Writing and Use of Functions...80
9.3 Functions as aids to Data Management ...81
9.4 A Simulation Example ..81
9.5 Exercises...82

*10. GLM, and General Non-linear Models...85
10.1 A Taxonomy of Extensions to the Linear Model ...85
10.2 Logistic Regression...86
10.3 glm models (Generalized Linear Regression Modelling) ...90
10.4 Models that Include Smooth Spline Terms ...90
10.5 Non-linear Models..90
10.6 Model Summaries ...90
10.7 Further Elaborations..91
10.8 Exercises...91
10.9 References...91

*11. Multi-level Models, Time Series and Survival Analysis ..93
11.1 Multi-Level Models, Including Repeated Measures Models...93
11.2 Time Series Models...97
11.3 Survival Analysis ..98
11.4 Exercises...98
11.5 References...98

*12. Advanced Programming Topics ..99
12.1. Methods ...99
12.2 Extracting Arguments to Functions ..99
12.3 Parsing and Evaluation of Expressions..100
12.4 Plotting a mathematical expression..101
12.4 Searching R functions for a specified token..102

13. R Resources ...103
13.1 R Packages for Windows ..103
13.2 Literature written by expert users...103
13.3 The R-help electronic mail discussion list ..104
13.4 Competing Systems – XLISP-STAT...104

14. Appendix 1...105
14.1 Data Sets Referred to in these Notes ..105
14.2 Answers to Selected Exercises ..105

iv

1

Introduction
R implements a dialect of the S language that was developed at AT&T Bell Laboratories by Rick Becker, John
Chambers and Allan Wilks. Versions of R are available, at no cost, for 32-bit versions of Microsoft Windows for
Linux, for Unix and for Macintosh systems 8.6 or later. It is available through the Comprehensive R Archive
Network (CRAN). Web addresses are given below.

The citation for John Chambers’ 1998 Association for Computing Machinery Software award stated that S has
“forever altered how people analyze, visualize and manipulate data.” The R project enlarges on the ideas and
insights that generated the S language.

Here are points relating to the use of R that potential users might consider:

1. R has extensive and powerful graphics abilities, that are tightly linked with its analytic abilities.

2. Although there is no official support for R, its informal support network, accessible from the r-help mailing
list, can be highly effective.

3. Simple calculations and analyses can be handled straightforwardly, albeit (in the current version) using a
command line interface. Chapters 1 and 2 are intended to give the flavour of what is possible without getting
deeply into the R language. If simple methods prove inadequate, there can be recourse to the huge range of
more advanced abilities that R offers. Adaptation of available abilities allows even greater flexibility.

4. The R community is widely drawn, from application area specialists as well as statistical specialists. It is a
community that is sensitive to the potential for misuse of statistical techniques and suspicious of what might
appear to be mindless use. Expect scepticism of the use of models that are not susceptible to some minimal
form of data-based validation.

5. Because R is free, users have no right to expect attention, on the r-help list or elsewhere, to queries. Be
grateful for whatever help is given.

There is no substitute for experience and expert knowledge, even when the statistical analysis task may seem
straightforward. Neither R nor any other statistical system will give the statistical expertise that is needed to use
sophisticated abilities, or to know when naïve methods are not enough. Experience with the use of R is however,
more than with most systems, likely to be an educational experience.

While R is as reliable as any statistical software that is available, and exposed to higher standards of scrutiny
than most other systems, there are traps that call for special care. Many of the model fitting routines in R are
leading edge. There may be a limited tradition of experience of the limitations and potential pitfalls of some of
the newer abilities. Whatever the statistical system, and especially when there is some element of complication,
check each step with care.

Hurrah for the R development team!

The Use of these Notes

The notes are designed so that users can run the examples in the script files (ch1-2.R, ch3-4.R, etc.) using the
notes as commentary. Under Windows alternatives are can either to type the commands in at the console, or to
open a display file window and feed the commands in one at a time from the display file window. Section 1.2
gives details of these alternative ways to input commands to R.

Users who are working through these notes on their own should have available for reference the document:
“An Introduction to R”, written by the R Development Core Team. To download a copy, or to download a
distribution set that includes this document, go to

http://cran.r-project.org

and look for the nearest CRAN (Comprehensive R Archive Network) site.

Australian users may wish to go directly to the site:
http://mirror.aarnet.edu.au/pub/CRANhttp://mirror.aarnet.edu.au/pub/CRANhttp://mirror.aarnet.edu.au/pub/CRANhttp://mirror.aarnet.edu.au/pub/CRAN

2

The R Project

The initial version of R was developed by Ross Ihaka and Robert Gentleman, both from the University of
Auckland. Development of R is now overseen by a `core team’ of about a dozen people, widely drawn from
different institutions worldwide. The development model is similar to that of the increasingly popular Linux
operating system.

Like Linux, R is an “open source” system. Source-code is available for inspection or for adaptation to other
systems. In principle, if it is unclear what a routine does, one can check the source code. Exposing code to the
critical scrutiny of highly expert users has proved an extremely effective way to identify bugs and other
inadequacies, and to elicit ideas for enhancement. Reported bugs are commonly fixed in the next minor-minor
release, which will usually appear within a matter of weeks.

A point and click interface is at an early stage of development. Users should be aware that R is developing
rapidly. Substantial new features appear every few months. As of version 1.2, R has a “dynamic memory”
model. Depending on available computer memory, the processing of a data set containing one hundred thousand
observations and perhaps twenty variables may press the limits of what R can reasonably handle.

Novice users will notice small but occasionally important differences between the S dialect that R implements
and the commercial S-PLUS implementation of S. Those who write their own substantial functions and (more
importantly) libraries will find large differences. Libraries that have been written for R offer abilities that are
broadly comparable with, or in some instances go beyond, those in S-PLUS libraries. These give access to up-to-
date methodology from leading statistical researchers. R has strong graphics abilities. The recently released
beta version of the lattice graphics library gives many of the abilities that are in the S-PLUS trellis library.

R is attractive as a language environment for the development of new scientific computational tools. Computer-
intensive components can, if computational efficiency demands, be handled by a call to a function that is written
in the C language.

The R-help mailing list is a useful source of advice and help. Be sure to check the available documentation
before posting this list. Archives are available that can be searched for questions that may have been previously
answered. The final chapter gives useful web addresses.

Jeff Wood (CMIS, CSIRO), Andreas Ruckstuhl (Technikum Winterthur Ingenieurschule, Switzerland) and John
Braun (University of Western Ontario) gave me exemplary help in getting the earlier S-PLUS version of this
document somewhere near shipshape form. John Braun gave valuable help with proofreading, and provided
several of the data sets and a number of the exercises. I take full responsibility for the errors that remain. I am
grateful, also, to the various scientists named in the notes who have allowed me to use their data.

3

1. Starting Up
R must be installed on your system! If it is not, follow the installation instructions appropriate to the operating
system. Installation is now especially straightforward for Windows users. Copy down the latest SetupR.exe
from the relevant base directory on the nearest CRAN site, click on its icon to start installation, and follow
instructions. Libraries that do not come with the base distribution must be downloaded and installed separately.

It pays to have a separate workspace directory for each major project. For more details. see the README file
that is included with the R distribution. Users of Microsoft Windows may wish to create a separate icon for each
such workspace. First create the directory that will be used for the new workspace. Then right click|copy1 to
copy an existing R icon, it, right click|paste to place a copy on the desktop, right click|rename on the copy to
rename it2, and then finally go to right click|properties to set the Start in directory to be the workspace directory
that was set up earlier.

1.1 Getting started under Windows
Click on the R icon. Or if there is more than one icon, choose the icon that corresponds to the project that is in
hand. For this demonstration I will click on my r-notes icon.

In interactive use under Microsoft Windows there are several ways to input commands to R. Figures 1 and 2
demonstrate two of the possibilities. Either or both of the following may be used at the user’s discretion:

For the moment, we will type commands into the command window, at the command line prompt. Fig. 1 shows
the command window as it appears when R has just been started, for version 0.90.0. At the time of writing, the
latest version is 1.3.0.

Fig. 1: The R console (command line) window.

1 This is a shortcut for “right click, then left click on the copy menu item”.
2 Enter the name of your choice into the name field. For ease of remembering, choose a name that closely
matches the name of the workspace directory.

4

The screen snapshot in Fig.2 shows a display file window. This allows input to R of statements from a file that
has been set up in advance. To get a display file window, go to the File menu. Then click on Display File. You
will be asked for the name of a file whose contents are then displayed in the window. In Fig. 2 the file was
rcommands.txt.

Highlight the commands that are intended for input to R. Click on the `Paste to console’ icon, on the far left of
the display file toolbar in Figs. 2 and 3, to send these commands to R.

Fig. 2: The focus is on an R display file window, with the console window in the background.

 Fig. 3: The `paste to console’, `print’, and `return focus to console’ icons.

Under Unix, the standard form of input is the command line interface. Under both Microsoft Windows and
Linux (or Unix), a further possibility is to run R from within the emacs editor3. This works much better under

3This requires both emacs and the emacs add-on call ESS. Both are free. look under Software|Other on the
CRAN web page.

5

Linix/Unix than under Windows. Under Microsoft Windows, an attractive option is to use a utility that is
designed for use with the shareware WinEdt editor4.

1.2 Using the Console (or Command Line) Window
Fig. 1 showed the console window when it was first opened.

The command line prompt, i.e. the >>>>, is an invitation to start typing in your commands. For example, type in
2+22+22+22+2 and press the Enter key. Here is what I get on my screen:

> 2+2> 2+2> 2+2> 2+2

[1] 4[1] 4[1] 4[1] 4

>>>>

Here the result is 4. The[1][1][1][1] says, a little strangely, “first requested element will follow”. Here, there is just one
element. The >>>> indicates that R is ready for another command.

The exit or quit command is
> q()> q()> q()> q()

Alternatives are to click on the File menu and then on Exit, or to click on the ×××× in the top right hand corner of
the R window. There will be a message asking whether to save the workspace image. Clicking Yes (the safe
option) will save all the objects that remain in the workspace – any that were there at the start of the session and
any that have been added since.

1.3 A Short R Session
We will read into R a file that holds the population figures for Australian states and territories, and the total
population, at various times since 1917. We will use information from this file to create a graph. Here is the
information in the file:

Year NSW Vic. Qld SA WA Tas. NT ACT Aust.
1917 1904 1409 683 440 306 193 5 3 4941
1927 2402 1727 873 565 392 211 4 8 6182
1937 2693 1853 993 589 457 233 6 11 6836
1947 2985 2055 1106 646 502 257 11 17 7579
1957 3625 2656 1413 873 688 326 21 38 9640
1967 4295 3274 1700 1110 879 375 62 103 11799
1977 5002 3837 2130 1286 1204 415 104 214 14192
1987 5617 4210 2675 1393 1496 449 158 265 16264
1997 6274 4605 3401 1480 1798 474 187 310 18532

The following reads in the data from the file austpop.txtaustpop.txtaustpop.txtaustpop.txt on a disk in drive a:a:a:a:

> austpop <> austpop <> austpop <> austpop <---- read.table(“a:/austpop.txt”, header=T) read.table(“a:/austpop.txt”, header=T) read.table(“a:/austpop.txt”, header=T) read.table(“a:/austpop.txt”, header=T)

The <<<<---- is a left diamond bracket (<<<<) followed by a minus sign (----). It means “is assigned to”. Use of
header=Theader=Theader=Theader=T causes R to use= the first line to get header information for the columns. If column headings are not
included in the file, the argument can be omitted.

Now type in austpopaustpopaustpopaustpop at the command line prompt, displaying the object on the screen:
> austpop> austpop> austpop> austpop

 Year NSW Vic. Qld SA WA Tas. NT ACT Aust. Year NSW Vic. Qld SA WA Tas. NT ACT Aust. Year NSW Vic. Qld SA WA Tas. NT ACT Aust. Year NSW Vic. Qld SA WA Tas. NT ACT Aust.

1 1917 1904 1409 683 440 306 193 5 3 49411 1917 1904 1409 683 440 306 193 5 3 49411 1917 1904 1409 683 440 306 193 5 3 49411 1917 1904 1409 683 440 306 193 5 3 4941

2 1927 2402 1727 873 565 392 211 4 8 61822 1927 2402 1727 873 565 392 211 4 8 61822 1927 2402 1727 873 565 392 211 4 8 61822 1927 2402 1727 873 565 392 211 4 8 6182

.

We will learn later that austpopaustpopaustpopaustpop is a special form of R object, known as a data frame. Data frames that consist
entirely of numeric data have a structure that is similar to that of numeric matrices.

4 The R-WinEdt utility, which is free, is a “plugin” for WinEdt. For links to the relevant web pages, for WinEdt
and R-WinEdt , look under Software|Other on the CRAN web page.

6

We will now do a plot of the ACT population between 1917 and 1997. We will first of all remind ourselves of
the column names:

> names(aus> names(aus> names(aus> names(austpop)tpop)tpop)tpop)

 [1] "Year" "NSW" "Vic." "Qld" "SA" "WA" "Tas." "NT" [1] "Year" "NSW" "Vic." "Qld" "SA" "WA" "Tas." "NT" [1] "Year" "NSW" "Vic." "Qld" "SA" "WA" "Tas." "NT" [1] "Year" "NSW" "Vic." "Qld" "SA" "WA" "Tas." "NT"

 [9] "ACT" "Aust." [9] "ACT" "Aust." [9] "ACT" "Aust." [9] "ACT" "Aust."

A simple way to get the plot is:
> plot(ACT ~ Year, data=austpop, pch=16)> plot(ACT ~ Year, data=austpop, pch=16)> plot(ACT ~ Year, data=austpop, pch=16)> plot(ACT ~ Year, data=austpop, pch=16)

The option pch=16pch=16pch=16pch=16 sets the plotting character to solid black dots. Fig. 4 shows the graph:

1920 1940 1960 1980 2000

0
50

10
0

20
0

30
0

Year

AC
T

Figure 4: ACT population, at various times between
1917 and 1997.

This plot can be improved greatly. We can specify more informative axis labels, change size of the text and of
the plotting symbol, and so on.

1.3.1 Entry of Data at the Command Line
A data frame is a rectangular array of columns of data. Here we will have two columns, and both columns will
be numeric. The following data gives, for each amount by which an elastic band is stretched over the end of a
ruler, the distance that the band moved when released:

Stretch (mm) Distance (cm)
 46 148
 54 182
 48 173
 50 166
 44 109
 42 141
 52 166

One can use data.frame()data.frame()data.frame()data.frame() to input these (or other) data directly at the command line. We will give the data
frame the name elasticbandelasticbandelasticbandelasticband:

elasticband <- data.frame(stretch=c(46,54,48,50,44,42,52),
 distance=c(148,182,173,166,109,141,166))

1.3.2 Options for use of read.table()

The function read.table()read.table()read.table()read.table() takes, optionally various parameters additional to the file name that holds the
data. Specify header=TRUEheader=TRUEheader=TRUEheader=TRUE if there is an initial row of header names. The default is header=FALSEheader=FALSEheader=FALSEheader=FALSE. In
addition users can specify the separator character or characters. Command alternatives to the default use of a

7

space are sep=","sep=","sep=","sep="," and sep="sep="sep="sep="\\\\t"t"t"t". This last choice makes tabs separators. Similarly, users can control over
the choice of missing value character or characters, which by default is NANANANA. If the missing value character is a
period (“.”), specify na.strings="."na.strings="."na.strings="."na.strings=".".

R has several variants of read.table()read.table()read.table()read.table() that differ only in having different default parameter settings. Note
in particular read.csv()read.csv()read.csv()read.csv(), which has settings that are suitable for comma delimited (csv) files that have been
generated from Excel spreadsheets.

If read.table()read.table()read.table()read.table() detects that lines in the input file have different numbers of fields, data input will fail, with
an error message that draws attention to the discrepancy. It is then often useful to use the function
count.fields()count.fields()count.fields()count.fields() to report the number of fields that were identified on each separate line of the file.

1.3.3 Options for plot() and allied functions

The function plot() and related functions accept parameters that control the plotting symbol, and the size and
colour of the plotting symbol. Details will be given in section 3.3.

1.4 Further Notational Details
As noted earlier, the command line prompt is

>>>>

R commands (expressions) are typed in following this prompt5.

There is also a continuation prompt, used when, following a carriage return, the command is still not complete.
By default, the continuation prompt is

++++

In these notes, we often continue commands over more than one line, but omit the + that will appear on the
commands window if the command is typed in as we show it.

For the names of R objects or commands, case is significant. Thus AustpopAustpopAustpopAustpop is different from austpopaustpopaustpopaustpop. For
file names however, the Microsoft Windows conventions apply, and case does not distinguish file names. On
Unix systems letters that have a different case are treated as different.

Anything that follows a #### on the command line is taken as comment and ignored by R.

Note: Recall that, in order to quit from the R session we had to type q()q()q()q(). This is because qqqq is a function.
Typing qqqq on its own, without the parentheses, displays the text of the function on the screen. Try it!

1.5 On-line Help
To get a help window (under R for Windows) with a list of help topics, type:

> help()> help()> help()> help()

In R for Windows, an alternative is to click on the help menu item, and then use key words to do a search. To
get help on a specific R function, e.g. plot()plot()plot()plot(), type in

> help(plot)> help(plot)> help(plot)> help(plot)

The two search functions help.search()help.search()help.search()help.search() and apropos()apropos()apropos()apropos() can be a huge help in finding what one wants.
Examples of their use are:

> help.search("matri> help.search("matri> help.search("matri> help.search("matrix")x")x")x")

This lists all functions whose help pages have a title or alias in which the text string “matrix”
appears.

> apropos(matrix)> apropos(matrix)> apropos(matrix)> apropos(matrix)

This lists all function names that include the text “matrix”.

Experimentation often helps clarify the precise action of an R function.

5 Multiple commands may appear on the one line, with the semicolon (;;;;) as the separator.

8

1.6 Exercise
1. In the data frame elasticbandelasticbandelasticbandelasticband from section 1.3.1, plot distancedistancedistancedistance against stretchstretchstretchstretch.

2. The following ten observations, taken during the years 1970-79, are on October snow cover for Eurasia.
(Snow cover is in millions of square kilometers):

year snow.cover
1970 6.5
1971 12.0
1972 14.9
1973 10.0
1974 10.7
1975 7.9
1976 21.9
1977 12.5
1978 14.5
1979 9.2

i. Enter the data into R. [Section 1.3.1 showed one way to do this. To save keystrokes, enter the successive
years as 1970:11970:11970:11970:1979979979979]

ii. Plot snow.coversnow.coversnow.coversnow.cover versus yearyearyearyear.

iii Use the hist()hist()hist()hist() command to plot a histogram of the snow cover values.

iv. Repeat ii and iii after taking logarithms of snow cover.

3. Input the following data, on damage that had occurred in space shuttle launches prior to the disastrous launch
of Jan 28 1986. These are the data, for 6 launches out of 24, that were included in the pre-launch charts that
were used in deciding whether to proceed with the launch. (Data for the 23 launches where information is
available is in the data set oringsoringsoringsorings that accompanies these notes.)

Temperature Erosion Blowby Total
 (F) incidents incidents incidents
 53 3 2 5
 57 1 0 1
 63 1 0 1
 70 1 0 1
 70 1 0 1
 75 0 2 1

Enter these data into a data frame, with (for example) column names temperaturetemperaturetemperaturetemperature, erosionerosionerosionerosion, blowbyblowbyblowbyblowby
and totaltotaltotaltotal. (Refer back to Section 1.3.1). Plot total incidents against temperature.

9

2. An Overview of R

2.1 The Uses of R

2.1.1 R may be used as a calculator.

R evaluates and prints out the result of any expression that one types in at the command line in the console
window. Expressions are typed following the prompt (>>>>) on the screen. The result, if any, appears on
subsequent lines

> 2+2> 2+2> 2+2> 2+2

[1] 4[1] 4[1] 4[1] 4

> sqrt(10)> sqrt(10)> sqrt(10)> sqrt(10)

[1] 3.162278[1] 3.162278[1] 3.162278[1] 3.162278

> 2*3*4*5> 2*3*4*5> 2*3*4*5> 2*3*4*5

[1] 120[1] 120[1] 120[1] 120

> 1000*(1+0.075)^5 > 1000*(1+0.075)^5 > 1000*(1+0.075)^5 > 1000*(1+0.075)^5 ---- 1000 # Interest on $1000, compounded annually 1000 # Interest on $1000, compounded annually 1000 # Interest on $1000, compounded annually 1000 # Interest on $1000, compounded annually

[1] 435.6293[1] 435.6293[1] 435.6293[1] 435.6293

> # at 7.5% p.a. for five years> # at 7.5% p.a. for five years> # at 7.5% p.a. for five years> # at 7.5% p.a. for five years

> pi # R knows about pi> pi # R knows about pi> pi # R knows about pi> pi # R knows about pi

[1] 3.141593[1] 3.141593[1] 3.141593[1] 3.141593

> 2*> 2*> 2*> 2*pi*6378 #Circumference of Earth at Equator, in km; radius is 6378 kmpi*6378 #Circumference of Earth at Equator, in km; radius is 6378 kmpi*6378 #Circumference of Earth at Equator, in km; radius is 6378 kmpi*6378 #Circumference of Earth at Equator, in km; radius is 6378 km

[1] 40074.16[1] 40074.16[1] 40074.16[1] 40074.16

> sin(c(30,60,90)*pi/180) # Convert angles to radians, then take sin()> sin(c(30,60,90)*pi/180) # Convert angles to radians, then take sin()> sin(c(30,60,90)*pi/180) # Convert angles to radians, then take sin()> sin(c(30,60,90)*pi/180) # Convert angles to radians, then take sin()

[1] 0.5000000 0.8660254 1.0000000[1] 0.5000000 0.8660254 1.0000000[1] 0.5000000 0.8660254 1.0000000[1] 0.5000000 0.8660254 1.0000000

2.1.2 R will provide numerical or graphical summaries of data

A special class of object, called a data frame, stores rectangular arrays in which the columns may be vectors of
numbers or factors or text strings. Data frames are central to the way that all the more recent R routines process
data. For now, think of data frames as matrices, where the rows are observations and the columns are variables.

As a first example, consider the data frame hillshillshillshills that accompanies these notes6. This has three columns
(variables), with the names distancedistancedistancedistance, climbclimbclimbclimb, and timetimetimetime. Typing in summasummasummasummary(hills)ry(hills)ry(hills)ry(hills)gives summary
information on these variables. There is one column for each variable, , , , thus:

> data(hills) # Gives access to the data frame hills> data(hills) # Gives access to the data frame hills> data(hills) # Gives access to the data frame hills> data(hills) # Gives access to the data frame hills

> summary(hills)> summary(hills)> summary(hills)> summary(hills)

 distance climb time distance climb time distance climb time distance climb time

 Min.: 2.000 Min.: 300 Min.: 2.000 Min.: 300 Min.: 2.000 Min.: 300 Min.: 2.000 Min.: 300 Min.: 15.95 Min.: 15.95 Min.: 15.95 Min.: 15.95

 1st Qu.: 4.500 1st Qu.: 725 1st Qu.: 28.00 1st Qu.: 4.500 1st Qu.: 725 1st Qu.: 28.00 1st Qu.: 4.500 1st Qu.: 725 1st Qu.: 28.00 1st Qu.: 4.500 1st Qu.: 725 1st Qu.: 28.00

 Median: 6.000 Median:1000 Median: 39.75 Median: 6.000 Median:1000 Median: 39.75 Median: 6.000 Median:1000 Median: 39.75 Median: 6.000 Median:1000 Median: 39.75

 Mean: 7.529 Mean:1815 Mean: 57.88 Mean: 7.529 Mean:1815 Mean: 57.88 Mean: 7.529 Mean:1815 Mean: 57.88 Mean: 7.529 Mean:1815 Mean: 57.88

 3rd Qu.: 8.000 3rd Qu.:2200 3rd Qu.: 68.62 3rd Qu.: 8.000 3rd Qu.:2200 3rd Qu.: 68.62 3rd Qu.: 8.000 3rd Qu.:2200 3rd Qu.: 68.62 3rd Qu.: 8.000 3rd Qu.:2200 3rd Qu.: 68.62

 Max.:28.000 Max.:7500 Ma Max.:28.000 Max.:7500 Ma Max.:28.000 Max.:7500 Ma Max.:28.000 Max.:7500 Max.:204.60 x.:204.60 x.:204.60 x.:204.60

We may for example require information on ranges of variables. Thus the range of distances (first column) is
from 2 miles to 28 miles, while the range of times (third column) is from 15.95 (minutes) to 204.6 minutes.

We will discuss graphical summaries in the next section.

6 There is also a version in the Venables and Ripley MASS library.

10

2.1.3 R has extensive graphical abilities

The main R graphics function is plot()plot()plot()plot(). In addition to plot()plot()plot()plot() there are functions for adding points and lines
to existing graphs, for placing text at specified positions, for specifying tick marks and tick labels, for labelling
axes, and so on.

There are various other alternative helpful forms of graphical summary. A helpful graphical summary for the
hillshillshillshills data frame is the scatterplot matrix, shown in Fig. 5. For this, type:

> pairs> pairs> pairs> pairs(hills)(hills)(hills)(hills)

distance

1000 4000 7000

5
15

25

10
00

40
00

70
00

climb

5 15 25 50 150
50

15
0

time

Figure 5: Scatterplot matrix for the Scottish hill race data

2.1.4 R will handle a variety of specific analyses

The examples that will be given are correlation and regression.

Correlation:

We calculate the correlation matrix for the hillshillshillshills data:
> options(digits=3)> options(digits=3)> options(digits=3)> options(digits=3)

> cor(hills)> cor(hills)> cor(hills)> cor(hills)

 distance climb time distance climb time distance climb time distance climb time

distance 1.000 0.652 0.920distance 1.000 0.652 0.920distance 1.000 0.652 0.920distance 1.000 0.652 0.920

 climb 0.652 1.000 0.805 climb 0.652 1.000 0.805 climb 0.652 1.000 0.805 climb 0.652 1.000 0.805

 time 0.920 0.805 1.000 time 0.920 0.805 1.000 time 0.920 0.805 1.000 time 0.920 0.805 1.000

Suppose we wish to calculate logarithms, and then calculate correlations. We can do all this in one step, thus:
> cor(log(hills))> cor(log(hills))> cor(log(hills))> cor(log(hills))

 distance climb time distance climb time distance climb time distance climb time

distance 1.00 0.700 0.890distance 1.00 0.700 0.890distance 1.00 0.700 0.890distance 1.00 0.700 0.890

 climb 0.70 1.000 0.724 climb 0.70 1.000 0.724 climb 0.70 1.000 0.724 climb 0.70 1.000 0.724

 time 0.89 0.724 1.000 time 0.89 0.724 1.000 time 0.89 0.724 1.000 time 0.89 0.724 1.000

Unfortunately R was not clever enough to relabel distance as log(distance), climb as log(climb), and time as
log(time). Notice that the correlations between time and distance, and between time and climb, have reduced.
Why has this happened?

11

Straight Line Regression:

Here is a straight line regression calculation. One specifies an lmlmlmlm (= linear model) expression, which R
evaluates. The data are stored in the data frame elasticband elasticband elasticband elasticband that accompanies these notes. The variable
names are the names of columns in that data frame. The command asks for the regression of distance travelled
by the elastic band (distance) on the amount by which it is stretched (stretch).

> plot(distance ~ stretch,data=> plot(distance ~ stretch,data=> plot(distance ~ stretch,data=> plot(distance ~ stretch,data=elasticbandelasticbandelasticbandelasticband, pch=16), pch=16), pch=16), pch=16)

> > > > elasticelasticelasticelastic.lm <.lm <.lm <.lm <---- lm(distance~stretch,data= lm(distance~stretch,data= lm(distance~stretch,data= lm(distance~stretch,data=elasticbandelasticbandelasticbandelasticband))))

> lm(distance ~stretch,data=> lm(distance ~stretch,data=> lm(distance ~stretch,data=> lm(distance ~stretch,data=elasticbandelasticbandelasticbandelasticband))))

Call:Call:Call:Call:

lm(formula = distance ~ stretch, data = lm(formula = distance ~ stretch, data = lm(formula = distance ~ stretch, data = lm(formula = distance ~ stretch, data = elastelastelastelasticbandicbandicbandicband))))

Coefficients:Coefficients:Coefficients:Coefficients:

(Intercept) stretch (Intercept) stretch (Intercept) stretch (Intercept) stretch

 ----63.571 4.554 63.571 4.554 63.571 4.554 63.571 4.554

More complete information is available by typing
> summary(lm(distance~stretch,data=> summary(lm(distance~stretch,data=> summary(lm(distance~stretch,data=> summary(lm(distance~stretch,data=elasticbandelasticbandelasticbandelasticband))))))))

Try it!

2.1.5 R is an Interactive Programming Language

We calculate the Fahrenheit temperatures that correspond to Celsius temperatures 25, 26, …, 30:
> celsius <> celsius <> celsius <> celsius <---- 25:30 25:30 25:30 25:30

> fahrenheit <> fahrenheit <> fahrenheit <> fahrenheit <---- 9/5*celsius+32 9/5*celsius+32 9/5*celsius+32 9/5*celsius+32

> conversion <> conversion <> conversion <> conversion <---- data.frame(Celsius=celsius, Fahrenheit=fahrenheit) data.frame(Celsius=celsius, Fahrenheit=fahrenheit) data.frame(Celsius=celsius, Fahrenheit=fahrenheit) data.frame(Celsius=celsius, Fahrenheit=fahrenheit)

> print(conversion)> print(conversion)> print(conversion)> print(conversion)

 Celsius Fahrenheit Celsius Fahrenheit Celsius Fahrenheit Celsius Fahrenheit

1 25 77.01 25 77.01 25 77.01 25 77.0

2 2 2 2 26 78.8 26 78.8 26 78.8 26 78.8

3 27 80.63 27 80.63 27 80.63 27 80.6

4 28 82.44 28 82.44 28 82.44 28 82.4

5 29 84.25 29 84.25 29 84.25 29 84.2

6 30 86.06 30 86.06 30 86.06 30 86.0

We could also have used a loop. In general it is preferable to avoid loops whenever, as here, there is a good
alternative. Loops may involve severe computational overheads.

2.2 The Look and Feel of R
R is a functional language. There is a language core that uses standard forms of algebraic notation, allowing the
calculations described in Section 2.1.1. Beyond this, most computation is handled using functions. Even the
action of quitting from an R session uses, as noted earlier, the function call q()q()q()q().

It is often possible and desirable to operate on objects – vectors, arrays, lists and so on – as a whole. This
largely avoids the need for explicit loops, leading to clearer code. Section 2.1.5 above gave an example.

The structure of an R program looks very like the structure of the widely used general purpose language C and
its successors C++ and Java7.

7 Note however that R has no header files, most declarations are implicit, there are no pointers, and vectors of
text strings can be defined and manipulated directly. The implementation of R relies heavily on list processing
ideas from the LISP language. Lists are a key part of R syntax.

12

2.3 R Objects
All R entities, including functions and data structures, exist as objects. They can all be operated on as data.
Type in ls()ls()ls()ls() to see the names of all objects in your workspace. An alternative to ls()ls()ls()ls() is objects()objects()objects()objects(). In
both cases there is provision to specify a particular pattern, e.g. starting with the letter `p’8.

Typing the name of an object causes the printing of its contents. Try typing qqqq, meanmeanmeanmean, etc.

Important: On quitting, R offers the option of saving the workspace image. This allows the retention, for use in
the next session in the same workspace, any objects that were created in the current session. Careful
housekeeping may be needed to distinguish between objects that are to be kept and objects that will not be used
again. Before typing q()q()q()q() to quit, use rm()rm()rm()rm() to remove objects that are no longer required. Saving the
workspace image will then save everything remains. The workspace image will be automatically loaded upon
starting another session in that directory.

*92.4 Looping
In R there is often a better alternative to writing an explicit loop. Where possible, use one of the built-in
functions to avoid explicit looping. A simple example of a forforforfor loop is10

for (i in 1:10) print(i)for (i in 1:10) print(i)for (i in 1:10) print(i)for (i in 1:10) print(i)

Here is another example of a forforforfor loop, to do in a complicated way what we did very simply in section 2.1.5:
> # Celsius to Fahrenheit> # Celsius to Fahrenheit> # Celsius to Fahrenheit> # Celsius to Fahrenheit

> for (celsius in 25:30)> for (celsius in 25:30)> for (celsius in 25:30)> for (celsius in 25:30)

+ print(c(celsius, 9/5*celsius + 32))+ print(c(celsius, 9/5*celsius + 32))+ print(c(celsius, 9/5*celsius + 32))+ print(c(celsius, 9/5*celsius + 32))

[1] 25 77[1] 25 77[1] 25 77[1] 25 77

[1] 26.0 78.8[1] 26.0 78.8[1] 26.0 78.8[1] 26.0 78.8

[1] 27.0 80.6[1] 27.0 80.6[1] 27.0 80.6[1] 27.0 80.6

[1] 28.0 82.4[1] 28.0 82.4[1] 28.0 82.4[1] 28.0 82.4

[1] 29.0 84.2[1] 29.0 84.2[1] 29.0 84.2[1] 29.0 84.2

[1] 30 86[1] 30 86[1] 30 86[1] 30 86

2.4.1 More on looping

Here is a long-winded way to sum the three numbers 31, 51 and 91:
> answer <> answer <> answer <> answer <---- 0 0 0 0

> for (j in c(31,51,91)){answer <> for (j in c(31,51,91)){answer <> for (j in c(31,51,91)){answer <> for (j in c(31,51,91)){answer <---- j+answer} j+answer} j+answer} j+answer}

> answer> answer> answer> answer

[1] 173[1] 173[1] 173[1] 173

The calculation iteratively builds up the object answer, using the successive values of jjjj listed in the vector
(31,51,91). i.e. Initially, jjjj=31, and answeransweransweranswer is assigned the value 31 + 0 = 31. Then jjjj=51, and answeransweransweranswer is
assigned the value 51 + 31 = 82. Finally, jjjj=91, and answer is assigned the value 91 + 81 = 173. Then the
procedure ends, and the contents of answeransweransweranswer can be examined by typing in answer and pressing the Enter key.

8 Type in help(ls)help(ls)help(ls)help(ls) and help(grep)help(grep)help(grep)help(grep) to get details. The pattern matching conventions are those used for
grep()grep()grep()grep(), which is modelled on the Unix grep command.
9 Asterisks (*) identify sections that are more technical and might be omitted at a first reading
10 Other looping constructs are:

 repeat <expression> ## break must appear somewhere inside the loop

 while (x>0) <expression>

 Here <expression> is an R statement, or a sequence of statements that are enclosed within braces

13

There is a much easier (and better) way to do this calculation:
> sum(c(31,51,91))> sum(c(31,51,91))> sum(c(31,51,91))> sum(c(31,51,91))

[1] 173[1] 173[1] 173[1] 173

Skilled R users have limited recourse to loops. There are often, as in the example above, better alternatives.

2.5 R Functions
We give two simple examples of R functions.

2.5.1 An Approximate Miles to Kilometers Conversion
miles.to.km <miles.to.km <miles.to.km <miles.to.km <---- function(miles)miles*8/5 function(miles)miles*8/5 function(miles)miles*8/5 function(miles)miles*8/5

The return value is the value of the final (and in this instance only) expression that appears in the function
body11. Use the function thus

> miles.to.km(17> miles.to.km(17> miles.to.km(17> miles.to.km(175) # Approximate distance to Sydney, in miles5) # Approximate distance to Sydney, in miles5) # Approximate distance to Sydney, in miles5) # Approximate distance to Sydney, in miles

[1] 280[1] 280[1] 280[1] 280

The function will do the conversion for several distances all at once. To convert a vector of the three distances
100, 200 and 300 miles to distances in kilometers, specify:

> miles.to.km(c(100,200,30> miles.to.km(c(100,200,30> miles.to.km(c(100,200,30> miles.to.km(c(100,200,300))0))0))0))

[1] 160 320 480[1] 160 320 480[1] 160 320 480[1] 160 320 480

2.5.2 A Plotting function

The data set floridafloridafloridaflorida has the votes in the 2000 election for the various US Presidential candidates, county by
county in the state of Florida. The following plots the vote for Buchanan against the vote for Bush.

attach(florida)attach(florida)attach(florida)attach(florida)

plot(BUSH, BUCHANAN, xlab=”Bush”, ylab=”Buchanan”)plot(BUSH, BUCHANAN, xlab=”Bush”, ylab=”Buchanan”)plot(BUSH, BUCHANAN, xlab=”Bush”, ylab=”Buchanan”)plot(BUSH, BUCHANAN, xlab=”Bush”, ylab=”Buchanan”)

detach(florida) # In Sdetach(florida) # In Sdetach(florida) # In Sdetach(florida) # In S----PLUS, specify detach(“florida”)PLUS, specify detach(“florida”)PLUS, specify detach(“florida”)PLUS, specify detach(“florida”)

Here is a function that makes it possible to plot the figures for any pair of candidates.
plot.florida <plot.florida <plot.florida <plot.florida <---- function(xvar=”BUSH”, yv function(xvar=”BUSH”, yv function(xvar=”BUSH”, yv function(xvar=”BUSH”, yvar=”BUCHANAN”){ar=”BUCHANAN”){ar=”BUCHANAN”){ar=”BUCHANAN”){

x <x <x <x <---- florida[,xvar] florida[,xvar] florida[,xvar] florida[,xvar]

y<y<y<y<---- florida[,yvar] florida[,yvar] florida[,yvar] florida[,yvar]

plot(x, y, xlab=xvar,ylab=yvar)plot(x, y, xlab=xvar,ylab=yvar)plot(x, y, xlab=xvar,ylab=yvar)plot(x, y, xlab=xvar,ylab=yvar)

mtext(side=3, line=1.75, mtext(side=3, line=1.75, mtext(side=3, line=1.75, mtext(side=3, line=1.75,

 “Votes in Florida, by county, in “Votes in Florida, by county, in “Votes in Florida, by county, in “Votes in Florida, by county, in \\\\nthe 2000 US Presidential election”)nthe 2000 US Presidential election”)nthe 2000 US Presidential election”)nthe 2000 US Presidential election”)

}}}}

Note that the function body is enclosed in braces ({ }).

As well as plot.florida()plot.florida()plot.florida()plot.florida(), this allows, e.g.
plot.florida(yvar=”NADER”) # yvar=”NADER” overplot.florida(yvar=”NADER”) # yvar=”NADER” overplot.florida(yvar=”NADER”) # yvar=”NADER” overplot.florida(yvar=”NADER”) # yvar=”NADER” over----rides the defaultrides the defaultrides the defaultrides the default

plot.florida(xvar=”GORE”, yvar=”NADER”)plot.florida(xvar=”GORE”, yvar=”NADER”)plot.florida(xvar=”GORE”, yvar=”NADER”)plot.florida(xvar=”GORE”, yvar=”NADER”)

Fig. 6 shows the graph produced by plot.florida()plot.florida()plot.florida()plot.florida(), i.e. parameter settings are left at their defaults.

11 Alternatively a return value may be given using an explicit return()return()return()return() statement. This is however an
uncommon construction

14

0 50000 150000 250000

0
50

0
15

00
25

00
35

00

BUSH

BU
C

H
A

N
A

N

Votes in Florida, by county, in
the 2000 US Presidential election

Figure 6: Election night count of votes received, by county,
in the US 2000 Presidential election.

2.6 Vectors
Examples of vectors are

c(2,3,5,2,7,1)

3:10 # The numbers 3, 4, .., 10

c(T,F,F,F,T,T,F)

c(”Canberra”,”Sydney”,”Newcastle”,”Darwin”)

Vectors may have mode logical, numeric or character12. The first two vectors above are numeric, the third is
logical (i.e. a vector with elements of mode logical), and the fourth is a string vector (i.e. a vector with elements
of mode character).

The missing value symbol, which is NANANANA, can be included as an element of a vector.

2.6.1 Joining (concatenating) vectors

The cccc in c(2, 3, 5, 7, 1)c(2, 3, 5, 7, 1)c(2, 3, 5, 7, 1)c(2, 3, 5, 7, 1) above is an acronym for “concatenate”, i.e. the meaning is: “Join these
numbers together in to a vector. Existing vectors may be included among the elements that are to be
concatenated. In the following we form vectors xxxx and yyyy, which we then concatenate to form a vector zzzz:

> x <> x <> x <> x <---- c(2,3,5,2,7,1) c(2,3,5,2,7,1) c(2,3,5,2,7,1) c(2,3,5,2,7,1)

> x> x> x> x

[1] 2 3 5 2 7 1[1] 2 3 5 2 7 1[1] 2 3 5 2 7 1[1] 2 3 5 2 7 1

> y <> y <> y <> y <---- c(10,15,12) c(10,15,12) c(10,15,12) c(10,15,12)

> y> y> y> y

[1] 10 15 12[1] 10 15 12[1] 10 15 12[1] 10 15 12

> z <> z <> z <> z <---- c(x, y) c(x, y) c(x, y) c(x, y)

> z> z> z> z

[1] 2 3 5 2 7 1 10 15 12[1] 2 3 5 2 7 1 10 15 12[1] 2 3 5 2 7 1 10 15 12[1] 2 3 5 2 7 1 10 15 12

12 Below, we will meet the notion of “class”, which is important for some of the more sophisticated language
features of S-PLUS. The logical, numeric and character vectors just given have class NULL, i.e. they have no
class. There are special types of numeric vector which do have a class attribute. Factors (see section 2.6.3) are
an most important example.

15

The concatenate function c()c()c()c() may also be used to join lists.

2.6.2 Subsets of Vectors

There are two common ways to extract subsets of vectors13.

1. Specify the numbers of the elements that are to be extracted, e.g.
> x <> x <> x <> x <---- c(3,11,8,15,12) # Assign to x the values 3, 11, 8, 15, 12 c(3,11,8,15,12) # Assign to x the values 3, 11, 8, 15, 12 c(3,11,8,15,12) # Assign to x the values 3, 11, 8, 15, 12 c(3,11,8,15,12) # Assign to x the values 3, 11, 8, 15, 12

> x[c(2,4)] # Extract elements (rows) 2 and 4> x[c(2,4)] # Extract elements (rows) 2 and 4> x[c(2,4)] # Extract elements (rows) 2 and 4> x[c(2,4)] # Extract elements (rows) 2 and 4

[1] 11 15[1] 11 15[1] 11 15[1] 11 15

One can use negative numbers to omit elements:
> x <> x <> x <> x <---- c(3,11,8,15 c(3,11,8,15 c(3,11,8,15 c(3,11,8,15,12),12),12),12)

> x[> x[> x[> x[----c(2,3)]c(2,3)]c(2,3)]c(2,3)]

[1] 3 15 12[1] 3 15 12[1] 3 15 12[1] 3 15 12

2. Specify a vector of logical values. The elements that are extracted are those for which the logical value is TTTT.
Thus suppose we want to extract values of xxxx that are greater than 10.

> x>10 # This generates a vector of l> x>10 # This generates a vector of l> x>10 # This generates a vector of l> x>10 # This generates a vector of logical (T or F)ogical (T or F)ogical (T or F)ogical (T or F)

[1] F T F T T[1] F T F T T[1] F T F T T[1] F T F T T

> x[x>10]> x[x>10]> x[x>10]> x[x>10]

[1] 11 15 12[1] 11 15 12[1] 11 15 12[1] 11 15 12

Arithmetic relations that may be used in the extraction of subsets of vectors are <<<<, <=<=<=<=, >>>>, >=, ========, and !=!=!=!=. The
first four compare magnitudes, ======== tests for equality, and !=!=!=!= tests for inequality.

2.6.3 The Use of NA in Vector Subscripts

Note that any arithmetic operation or relation that involves NANANANA generates an NANANANA. Set

y <- c(1, NA, 3, 0, NA)

Be warned that y[y==NA] <y[y==NA] <y[y==NA] <y[y==NA] <---- 0 0 0 0 leaves yyyy unchanged. The reason is that all elements of y==NA y==NA y==NA y==NA evaluate to
NANANANA. This does not select an element of yyyy, and there is no assignment.

To replace all NANANANAs by 0, use
y[is.na(y)] <- 0

2.6.4 Factors

A factor is a special type of vector, stored internally as a numeric vector with values 1, 2, 3, k. The value k is
the number of levels. An attributes table gives the ‘level’ for each integer value14. Factors provide a compact
way to store character strings. They are crucial in the representation of categorical effects in model and graphics
formulae. The class attribute of a factor has, not surprisingly, the value “factor”.

Consider a survey that has data on 691 females and 692 males. If the first 691 are females and the next 692
males, we can create a vector of strings that that holds the values thus:

13 A third more subtle method is available when vectors have named elements. One can then use a vector of
names to extract the elements, thus:

> c(Andreas=178, John=185, Jeff=183)[c("John","Jeff")]> c(Andreas=178, John=185, Jeff=183)[c("John","Jeff")]> c(Andreas=178, John=185, Jeff=183)[c("John","Jeff")]> c(Andreas=178, John=185, Jeff=183)[c("John","Jeff")]

 John Jeff John Jeff John Jeff John Jeff

 185 183 185 183 185 183 185 183

14 The attributes() function makes it possible to inspect attributes. For example
attributes(factor(1:3)) attributes(factor(1:3)) attributes(factor(1:3)) attributes(factor(1:3))

The function levels()levels()levels()levels() gives a better way to inspect factor levels.

16

gender <gender <gender <gender <---- c(rep(“female”,6 c(rep(“female”,6 c(rep(“female”,6 c(rep(“female”,691), rep(“male”,692))91), rep(“male”,692))91), rep(“male”,692))91), rep(“male”,692))

(The usage is that rep(“female”, 691)rep(“female”, 691)rep(“female”, 691)rep(“female”, 691) creates 691 copies of the character string “female”, and similarly
for the creation of 692 copies of “male”.)

We can change the vector to a factor, by entering:
gender <gender <gender <gender <---- factor(gender) factor(gender) factor(gender) factor(gender)

Internally the factor gendergendergendergender is stored as 691 1’s, followed by 692 2’s. It has stored with it a table that looks
like this:

1 female

2 male

Once stored as a factor, the space required for storage is reduced.

Whenever the context seems to demand a character string, the 1 is translated into “female” and the 2 into “male”.
The values “female” and “male” are the levels of the factor. By default, the levels are in alphanumeric order, so
that “female” precedes “male”. Hence:

> levels(gender) # Assumes gender is a factor, created as above

[1] "female" "male"

The order of the levels in a factor determines the order in which the levels appear in graphs that use this
information, and in tables. To cause “male” to come before “female”, use

gender <gender <gender <gender <---- relevel(gender, ref= relevel(gender, ref= relevel(gender, ref= relevel(gender, ref=“male”)“male”)“male”)“male”)

An alternative is
gender <gender <gender <gender <---- factor(gender, levels=c(“male”, “female”)) factor(gender, levels=c(“male”, “female”)) factor(gender, levels=c(“male”, “female”)) factor(gender, levels=c(“male”, “female”))

This last syntax is available both when the factor is first created, or later when one wishes to change the order of
levels in an existing factor. Incorrect spelling of the level names will generate an error message. Try

gender <gender <gender <gender <---- factor(c(rep(“female”,691), rep(“male”,692))) factor(c(rep(“female”,691), rep(“male”,692))) factor(c(rep(“female”,691), rep(“male”,692))) factor(c(rep(“female”,691), rep(“male”,692)))

table(gender)table(gender)table(gender)table(gender)

gender <gender <gender <gender <---- factor(gender, levels=c(“male”, “female”)) factor(gender, levels=c(“male”, “female”)) factor(gender, levels=c(“male”, “female”)) factor(gender, levels=c(“male”, “female”))

table(gender)table(gender)table(gender)table(gender)

gender <gender <gender <gender <---- factor(gender, levels=c(“Male”, “female”)) factor(gender, levels=c(“Male”, “female”)) factor(gender, levels=c(“Male”, “female”)) factor(gender, levels=c(“Male”, “female”))

 # Erroneou# Erroneou# Erroneou# Erroneous s s s ---- "male" rows now hold missing values "male" rows now hold missing values "male" rows now hold missing values "male" rows now hold missing values

table(gender)table(gender)table(gender)table(gender)

rm(gender) rm(gender) rm(gender) rm(gender) # Remove gender# Remove gender# Remove gender# Remove gender

2.7 Data Frames
Data frames are fundamental to the use of the R modelling and graphics functions. A data frame is a
generalisation of a matrix, in which different columns may have different modes. All elements of any column
must however have the same mode, i.e. all numeric or all factor, or all character.

Among the data sets that are supplied to accompany these notes is one called Cars93.summaryCars93.summaryCars93.summaryCars93.summary, created from
information in the Cars93Cars93Cars93Cars93 data set in the Venables and Ripley mass library. Here it is:

> Cars93.summary> Cars93.summary> Cars93.summary> Cars93.summary

 Min.passengers Max.passengers No.of.cars abbrev Min.passengers Max.passengers No.of.cars abbrev Min.passengers Max.passengers No.of.cars abbrev Min.passengers Max.passengers No.of.cars abbrev

Compact 4 6 16 CCompact 4 6 16 CCompact 4 6 16 CCompact 4 6 16 C

Large 6 Large 6 Large 6 Large 6 6 11 L 6 11 L 6 11 L 6 11 L

Midsize 4 6 22 MMidsize 4 6 22 MMidsize 4 6 22 MMidsize 4 6 22 M

Small 4 5 21 SmSmall 4 5 21 SmSmall 4 5 21 SmSmall 4 5 21 Sm

Sporty 2 4 14 SpSporty 2 4 14 SpSporty 2 4 14 SpSporty 2 4 14 Sp

Van 7 8 9 VVan 7 8 9 VVan 7 8 9 VVan 7 8 9 V

The data frame has row labels (access with row.names(Cars93.summary)row.names(Cars93.summary)row.names(Cars93.summary)row.names(Cars93.summary)) Compact, Large, . . . The
column names (access with names(Cars93.summary)names(Cars93.summary)names(Cars93.summary)names(Cars93.summary)) are Min.passengersMin.passengersMin.passengersMin.passengers (i.e. the minimum number

17

of passengers for cars in this category), Max.passengers, No.of.carsMax.passengers, No.of.carsMax.passengers, No.of.carsMax.passengers, No.of.cars., and abbrevabbrevabbrevabbrev. The first three
columns have mode numeric, and the fourth has mode character. Columns can be vectors of any mode. The
column abbrevabbrevabbrevabbrev could equally well be stored as a factor.

Any of the following15 will pick out the fourth column of the data frame Cars93.summaryCars93.summaryCars93.summaryCars93.summary, then storing it in
the vector typetypetypetype.

type <type <type <type <---- Cars93.summary$abbrev Cars93.summary$abbrev Cars93.summary$abbrev Cars93.summary$abbrev

type <type <type <type <---- Cars93.summary[,4] Cars93.summary[,4] Cars93.summary[,4] Cars93.summary[,4]

type <type <type <type <---- Cars93.summary[,”abbrev”] Cars93.summary[,”abbrev”] Cars93.summary[,”abbrev”] Cars93.summary[,”abbrev”]

type <type <type <type <---- Cars93.summary[[4]] Cars93.summary[[4]] Cars93.summary[[4]] Cars93.summary[[4]] # Take the object that is stored# Take the object that is stored# Take the object that is stored# Take the object that is stored

in the fourth list element.# in the fourth list element.# in the fourth list element.# in the fourth list element.

2.7.1 Data frames as lists

A data frame is a list16 of column vectors, all of equal length. Just as with any other list, subscripting extracts a
list. Thus Cars93.summary[4]Cars93.summary[4]Cars93.summary[4]Cars93.summary[4] is a data frame with a single column, which is the fourth column vector of
Cars93.summaryCars93.summaryCars93.summaryCars93.summary. As noted above, use Cars93.summary[[4]]Cars93.summary[[4]]Cars93.summary[[4]]Cars93.summary[[4]] or Cars93.summary[,4]Cars93.summary[,4]Cars93.summary[,4]Cars93.summary[,4] to extract
the column vector.

The use of matrix-like subscripting, e.g. Cars93.summary[,4]Cars93.summary[,4]Cars93.summary[,4]Cars93.summary[,4] or Cars93.summary[1, 4]Cars93.summary[1, 4]Cars93.summary[1, 4]Cars93.summary[1, 4], takes
advantage of the rectangular structure of data frames.

2.7.2 Inclusion of character string vectors in data frames

When data are read in using read.table(), or when the data.frame()data.frame()data.frame()data.frame() function is used to create data
frames, vectors of character strings are by default turned into factors. Often this is convenient. If not, the
parameter setting as.is=Tas.is=Tas.is=Tas.is=T will prevent this behaviour, both with read.table() and with
data.frame()data.frame()data.frame()data.frame().

2.7.3 Built-in data sets

We will often use data sets that accompany one of the R libraries, usually stored as data frames. One such data
frame, in the base library, is treestreestreestrees, which gives girth, height and volume for 31 Black Cherry Trees. To bring
it into the workspace, type:

> data(trees) # Bring data set into workspace> data(trees) # Bring data set into workspace> data(trees) # Bring data set into workspace> data(trees) # Bring data set into workspace

Here is summary information on this data frame
> summary(trees)> summary(trees)> summary(trees)> summary(trees)

 Girth Height Girth Height Girth Height Girth Height Volume Volume Volume Volume

 Min. : 8.30 Min. :63 Min. :10.20 Min. : 8.30 Min. :63 Min. :10.20 Min. : 8.30 Min. :63 Min. :10.20 Min. : 8.30 Min. :63 Min. :10.20

 1st Qu.:11.05 1st Qu.:72 1st Qu.:19.40 1st Qu.:11.05 1st Qu.:72 1st Qu.:19.40 1st Qu.:11.05 1st Qu.:72 1st Qu.:19.40 1st Qu.:11.05 1st Qu.:72 1st Qu.:19.40

 Median :12.90 Median :76 Median :24.20 Median :12.90 Median :76 Median :24.20 Median :12.90 Median :76 Median :24.20 Median :12.90 Median :76 Median :24.20

 Mean :13.25 Mean :76 Mean :30.17 Mean :13.25 Mean :76 Mean :30.17 Mean :13.25 Mean :76 Mean :30.17 Mean :13.25 Mean :76 Mean :30.17

 3rd Qu.:15.25 3rd Qu.:80 3rd Qu.:37.30 3rd Qu.:15.25 3rd Qu.:80 3rd Qu.:37.30 3rd Qu.:15.25 3rd Qu.:80 3rd Qu.:37.30 3rd Qu.:15.25 3rd Qu.:80 3rd Qu.:37.30

 Max. Max. Max. Max. :20.60 Max. :87 Max. :77.00 :20.60 Max. :87 Max. :77.00 :20.60 Max. :87 Max. :77.00 :20.60 Max. :87 Max. :77.00

Type data()data()data()data() to get a list of built-in data sets in the libraries that have been loaded17.

15 Also legal is Cars93.summary[2]Cars93.summary[2]Cars93.summary[2]Cars93.summary[2]. This gives a data frame with the single column TypeTypeTypeType.
16 In general forms of list, elements that are of arbitrary type. They may be any mixture of scalars, vectors,
functions, etc.
17 The list include all libraries that are in the current environment.

18

2.8 Common Useful Functions
print() print() print() print() # Prints a single R object# Prints a single R object# Prints a single R object# Prints a single R object

cat() cat() cat() cat() # Prints multiple objects, one after the other# Prints multiple objects, one after the other# Prints multiple objects, one after the other# Prints multiple objects, one after the other

lelelelength() ngth() ngth() ngth() # Number of elements in a vector or of a list# Number of elements in a vector or of a list# Number of elements in a vector or of a list# Number of elements in a vector or of a list

mean()mean()mean()mean()

median()median()median()median()

range()range()range()range()

unique() unique() unique() unique() # Gives the vector of distinct values# Gives the vector of distinct values# Gives the vector of distinct values# Gives the vector of distinct values

diff() diff() diff() diff() # Replace a vector by the vector of first differences# Replace a vector by the vector of first differences# Replace a vector by the vector of first differences# Replace a vector by the vector of first differences

 # N. B. diff(x) has one less element than x # N. B. diff(x) has one less element than x # N. B. diff(x) has one less element than x # N. B. diff(x) has one less element than x

sort() sort() sort() sort() # Sort elements into order, but omitting NAs# Sort elements into order, but omitting NAs# Sort elements into order, but omitting NAs# Sort elements into order, but omitting NAs

order()order()order()order() # x[order(x)] orders elements of x, with NAs last# x[order(x)] orders elements of x, with NAs last# x[order(x)] orders elements of x, with NAs last# x[order(x)] orders elements of x, with NAs last

cumsum()cumsum()cumsum()cumsum()

cumprod()cumprod()cumprod()cumprod()

rev() rev() rev() rev() # reverse the order of vector elements# reverse the order of vector elements# reverse the order of vector elements# reverse the order of vector elements

The functions mean() mean() mean() mean(), median() median() median() median(), range(), range(), range(), range(), and a number of other functions, take the argument
na.rm=T; na.rm=T; na.rm=T; na.rm=T; i.e. remove NAs, then proceed with the calculation.

By default, sort()sort()sort()sort() omits any NAs. The function order()order()order()order() places NAs last. Hence:
> x <> x <> x <> x <---- c(1, 20, 2, NA, 22) c(1, 20, 2, NA, 22) c(1, 20, 2, NA, 22) c(1, 20, 2, NA, 22)

> order(x)> order(x)> order(x)> order(x)

[1] 1 3 2 5 4[1] 1 3 2 5 4[1] 1 3 2 5 4[1] 1 3 2 5 4

> x[order(x)]> x[order(x)]> x[order(x)]> x[order(x)]

[1] 1 2 20 22 NA[1] 1 2 20 22 NA[1] 1 2 20 22 NA[1] 1 2 20 22 NA

> sort(x)> sort(x)> sort(x)> sort(x)

[1] 1 2[1] 1 2[1] 1 2[1] 1 2 20 22 20 22 20 22 20 22

2.8.1 Applying a function to all columns of a data frame

The function sapply()sapply()sapply()sapply() does this. It takes as arguments the name of the data frame, and the function that is to
be applied. Here are examples, using the supplied data set rainforestrainforestrainforestrainforest

18.
> sappl> sappl> sappl> sapply(rainforest, is.factor)y(rainforest, is.factor)y(rainforest, is.factor)y(rainforest, is.factor)

 dbh wood bark root rootsk branch species dbh wood bark root rootsk branch species dbh wood bark root rootsk branch species dbh wood bark root rootsk branch species

 FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

> sapply(rainforest[,> sapply(rainforest[,> sapply(rainforest[,> sapply(rainforest[,----7], range) # The final column (7) is a factor7], range) # The final column (7) is a factor7], range) # The final column (7) is a factor7], range) # The final column (7) is a factor

 dbh wood bark root rootsk branch dbh wood bark root rootsk branch dbh wood bark root rootsk branch dbh wood bark root rootsk branch

[1,] 4 [1,] 4 [1,] 4 [1,] 4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

[2,] 56 NA NA NA NA NA[2,] 56 NA NA NA NA NA[2,] 56 NA NA NA NA NA[2,] 56 NA NA NA NA NA

The functions mean and range, and several of the other functions noted above, have parameters na.rmna.rmna.rmna.rm. For
example

> range(rainforest$branch, na.rm=T) # Omit NAs, then determine the range> range(rainforest$branch, na.rm=T) # Omit NAs, then determine the range> range(rainforest$branch, na.rm=T) # Omit NAs, then determine the range> range(rainforest$branch, na.rm=T) # Omit NAs, then determine the range

[[[[1] 4 120 1] 4 120 1] 4 120 1] 4 120

One can specify na.rm=Tna.rm=Tna.rm=Tna.rm=T as a third argument to the function sapplysapplysapplysapply. This argument is then automatically
passed to the function that is specified in the second argument position. For example:

18 Source: Ash, J. and Southern, W. 1982: Forest biomass at Butler’s Creek, Edith & Joy London Foundation,
New South Wales, Unpublished manuscript. See also Ash, J. and Helman, C. 1990: Floristics and vegetation
biomass of a forest catchment, Kioloa, south coastal N.S.W. Cunninghamia, 2(2): 167-182.

19

> sapply(rainforest[,> sapply(rainforest[,> sapply(rainforest[,> sapply(rainforest[,----7], range, na.rm=T)7], range, na.rm=T)7], range, na.rm=T)7], range, na.rm=T)

 dbh dbh dbh dbh wood bark root rootsk branchwood bark root rootsk branchwood bark root rootsk branchwood bark root rootsk branch

[1,] 4 3 8 2 0.3 4[1,] 4 3 8 2 0.3 4[1,] 4 3 8 2 0.3 4[1,] 4 3 8 2 0.3 4

[2,] 56 1530 105 135 24.0 120 [2,] 56 1530 105 135 24.0 120 [2,] 56 1530 105 135 24.0 120 [2,] 56 1530 105 135 24.0 120

Chapter 8 has further details on the use of sapply()sapply()sapply()sapply(). There is an example that shows how to use it to count
the number of missing values in each column of data.

2.9 Making Tables
table()table()table()table() makes a table of counts. Specify one vector of values (often a factor) for each table margin that is
required. Here are some examples

> table(rainforest$species) # rainforest is a supplied data set> table(rainforest$species) # rainforest is a supplied data set> table(rainforest$species) # rainforest is a supplied data set> table(rainforest$species) # rainforest is a supplied data set

AcaAcaAcaAcacia mabellae C. fraseri Acmena smithii B. myrtifolia cia mabellae C. fraseri Acmena smithii B. myrtifolia cia mabellae C. fraseri Acmena smithii B. myrtifolia cia mabellae C. fraseri Acmena smithii B. myrtifolia

 16 12 26 11 16 12 26 11 16 12 26 11 16 12 26 11

> table(Barley$Year,Barley$Site) > table(Barley$Year,Barley$Site) > table(Barley$Year,Barley$Site) > table(Barley$Year,Barley$Site)

 C D GR M UF W C D GR M UF W C D GR M UF W C D GR M UF W

 1931 5 5 5 5 5 5 1931 5 5 5 5 5 5 1931 5 5 5 5 5 5 1931 5 5 5 5 5 5

 1932 5 5 5 5 5 5 1932 5 5 5 5 5 5 1932 5 5 5 5 5 5 1932 5 5 5 5 5 5

WARNING: NA NA NA NAs are by default ignored. The action needed to get NANANANAs tabulated under a separate NANANANA category
depends, annoyingly, on whether or not the vector is a factor. If the vector is not a factor, specify
exclude=NULLexclude=NULLexclude=NULLexclude=NULL. If the vector is a factor then it is necessary to generate a new factor that includes “NA”“NA”“NA”“NA” as a
level. Specify x <x <x <x <---- factor(x,exclude=NULL) factor(x,exclude=NULL) factor(x,exclude=NULL) factor(x,exclude=NULL)

> x_c(1,5,NA,8)> x_c(1,5,NA,8)> x_c(1,5,NA,8)> x_c(1,5,NA,8)

> x <> x <> x <> x <---- factor(x) factor(x) factor(x) factor(x)

> x> x> x> x

[1] 1 5 NA 8 [1] 1 5 NA 8 [1] 1 5 NA 8 [1] 1 5 NA 8

Levels: 1 5 8 Levels: 1 5 8 Levels: 1 5 8 Levels: 1 5 8

> factor(x,exclude=NULL)> factor(x,exclude=NULL)> factor(x,exclude=NULL)> factor(x,exclude=NULL)

[1] 1 5 NA 8 [1] 1 5 NA 8 [1] 1 5 NA 8 [1] 1 5 NA 8

Levels: 1 5 8 NALevels: 1 5 8 NALevels: 1 5 8 NALevels: 1 5 8 NA

2.9.1 Numbers of NAs in subgroups of the data

The following gives information on the number of NAs in subgroups of the data:
> table(rainforest$species, !is.na(rainforest$branch))> table(rainforest$species, !is.na(rainforest$branch))> table(rainforest$species, !is.na(rainforest$branch))> table(rainforest$species, !is.na(rainforest$branch))

 FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE

 Acacia mabellae 6 10 Acacia mabellae 6 10 Acacia mabellae 6 10 Acacia mabellae 6 10

 C. fraseri 0 12 C. fraseri 0 12 C. fraseri 0 12 C. fraseri 0 12

 Acmena smithii Acmena smithii Acmena smithii Acmena smithii 15 1115 1115 1115 11

 B. myrtifolia 1 10 B. myrtifolia 1 10 B. myrtifolia 1 10 B. myrtifolia 1 10

Thus for Acacia mabellae there are 6 NAs for the variable branch (i.e. number of branches over 2cm in
diameter), out of a total of 16 data values.

2.10 The R Directory Structure
R has a search list where it looks for objects. This can be changed in the course of a session. To get a full list of
these directories, called databases, type:

> search() > search() > search() > search() # This is for version 1.2.3 for Windows# This is for version 1.2.3 for Windows# This is for version 1.2.3 for Windows# This is for version 1.2.3 for Windows

20

[1] ".GlobalEnv" "Autoloads" "package:base"[1] ".GlobalEnv" "Autoloads" "package:base"[1] ".GlobalEnv" "Autoloads" "package:base"[1] ".GlobalEnv" "Autoloads" "package:base"

At this point, just after startup, the search list consists of the workspace (".GlobalEnv"".GlobalEnv"".GlobalEnv"".GlobalEnv"), a slightly
mysterious database with the name Autoloads, and the base package or library. Addition of further libraries
(also called packages) extends this list. For example:

> library(ts) # > library(ts) # > library(ts) # > library(ts) # Time series library, included with the distributionTime series library, included with the distributionTime series library, included with the distributionTime series library, included with the distribution

> search()> search()> search()> search()

[1] ".GlobalEnv" "package:ts" "Autoloads" "package:base"[1] ".GlobalEnv" "package:ts" "Autoloads" "package:base"[1] ".GlobalEnv" "package:ts" "Autoloads" "package:base"[1] ".GlobalEnv" "package:ts" "Autoloads" "package:base"

2.11 More Detailed Information
This chapter has given the minimum detail that seems necessary for getting started. Look in chapters 7 and 8 for
a more detailed coverage of the topics in this chapter. It may pay, at this point, to glance through chapters 7 and
8 to see what is there. Remember also to use the R help.

Topics from chapter 7, additional to those covered above, that may be important for relatively elementary uses
of R include:

o The entry of patterned data (7.1.3)

o The handling of missing values in subscripts when vectors are assigned (7.2)

o Unexpected consequences (e.g. conversion of columns of numeric data into factors) from errors in data
(7.4.1).

2.11 Exercises
1. For each of the following code sequences, predict the result. Then do the computation:

a) answer <answer <answer <answer <---- 0 0 0 0
for (j in 3:5){ answer <for (j in 3:5){ answer <for (j in 3:5){ answer <for (j in 3:5){ answer <---- j+answer } j+answer } j+answer } j+answer }

b) answer<answer<answer<answer<---- 10 10 10 10

for (j in 3:5){ answer <for (j in 3:5){ answer <for (j in 3:5){ answer <for (j in 3:5){ answer <---- j+answer } j+answer } j+answer } j+answer }

c) answer <answer <answer <answer <---- 10 10 10 10

ffffor (j in 3:5){ answer <or (j in 3:5){ answer <or (j in 3:5){ answer <or (j in 3:5){ answer <---- j*answer } j*answer } j*answer } j*answer }

2. Look up the help for the function prod()prod()prod()prod(), and use prod()prod()prod()prod() to do the calculation in 1(c) above.
Alternatively, how would you expect prod()prod()prod()prod() to work? Try it!

3. Add up all the numbers from 1 to 100 in two different ways: using forforforfor and using sumsumsumsum. Now apply the
function to the sequence 1:100. What is its action?

4. Multiply all the numbers from 1 to 50 in two different ways: using forforforfor and using prodprodprodprod.

5. The volume of a sphere of radius r is given by 4πr3/3. For spheres having radii 3, 4, 5, …, 20 find the
corresponding volumes and print the results out in a table. Use the technique of section 2.1.5 to construct a data
frame with columns radiusradiusradiusradius and volumevolumevolumevolume.

6. Use sapply()sapply()sapply()sapply() to apply the function is.factoris.factoris.factoris.factor to each column of the supplied data frame tintingtintingtintingtinting.
For each of the columns that are identified as factors, determine the levels. Which columns are ordered factors?
[Use is.ordered()is.ordered()is.ordered()is.ordered()].

21

3. Plotting
The functions plot()plot()plot()plot(), points()points()points()points(), lines()lines()lines()lines(), text()text()text()text(), mtext()mtext()mtext()mtext(), axis(), axis(), axis(), axis(), identify()identify()identify()identify() etc. form
a suite that plots points, lines and text. To see some of the possibilities that R offers, enter

demo(graphics)demo(graphics)demo(graphics)demo(graphics)

Press the Enter key to move to each new graph.

3.1 plot () and allied functions
The following both plot yyyy against xxxx:

plot(plot(plot(plot(y ~ x) # Use a formula to specify the graphy ~ x) # Use a formula to specify the graphy ~ x) # Use a formula to specify the graphy ~ x) # Use a formula to specify the graph

plot(x, y) # plot(x, y) # plot(x, y) # plot(x, y) #

Obviously xxxx and yyyy must be the same length.

Try
plot((0:20)*pi/10, sin((0:20)*pi/10))plot((0:20)*pi/10, sin((0:20)*pi/10))plot((0:20)*pi/10, sin((0:20)*pi/10))plot((0:20)*pi/10, sin((0:20)*pi/10))

plot((1:30)*0.92, sin((1:30)*0.92))plot((1:30)*0.92, sin((1:30)*0.92))plot((1:30)*0.92, sin((1:30)*0.92))plot((1:30)*0.92, sin((1:30)*0.92))

Comment on the appearance that these graphs present. Is it obvious that these points lie on a sine curve? How
can one make it obvious? (Place the cursor over the lower border of the graph sheet, until it becomes a double-
sided arror. Drag the border in towards the top border, making the graph sheet short and wide.)

Here are two further examples.
attach(elasticband) # R now knows where to find distance & stretch attach(elasticband) # R now knows where to find distance & stretch attach(elasticband) # R now knows where to find distance & stretch attach(elasticband) # R now knows where to find distance & stretch

plot(distance ~ stretch) plot(distance ~ stretch) plot(distance ~ stretch) plot(distance ~ stretch)

plot(ACT ~ Year, data=austpop, type="l")plot(ACT ~ Year, data=austpop, type="l")plot(ACT ~ Year, data=austpop, type="l")plot(ACT ~ Year, data=austpop, type="l")

plot(ACT ~ Year, data=austpop, type="b")plot(ACT ~ Year, data=austpop, type="b")plot(ACT ~ Year, data=austpop, type="b")plot(ACT ~ Year, data=austpop, type="b")

The points()points()points()points() function adds points to a plot. The lines()lines()lines()lines() function adds lines to a plot19. The text()text()text()text()
function adds text at specified locations. The mtext()mtext()mtext()mtext() function places text in one of the margins. The
axis()axis()axis()axis() function gives fine control over axis ticks and labels.

Here is a further possibility
attach(austpattach(austpattach(austpattach(austpop)op)op)op)

plot(spline(Year, ACT), type="l") # Fit smooth curve through pointsplot(spline(Year, ACT), type="l") # Fit smooth curve through pointsplot(spline(Year, ACT), type="l") # Fit smooth curve through pointsplot(spline(Year, ACT), type="l") # Fit smooth curve through points

detach(austpop) # In Sdetach(austpop) # In Sdetach(austpop) # In Sdetach(austpop) # In S----PLUS, specify detach(“austpop”)PLUS, specify detach(“austpop”)PLUS, specify detach(“austpop”)PLUS, specify detach(“austpop”)

3.1.1 Newer plot methods

Above, I described the default plot method. The plot function is a generic function that has special methods for
“plotting” various different classes of object. For example, plotting a data frame gives, for each numeric
variable, a normal probability plot. Plotting the lmlmlmlm object that is created by the use of the lm()lm()lm()lm() modelling
function gives diagnostic and other information that is intended to help in the interpretation of regression results.

Try
plot(hills) # Has the same effect as pairs(hills)plot(hills) # Has the same effect as pairs(hills)plot(hills) # Has the same effect as pairs(hills)plot(hills) # Has the same effect as pairs(hills)

19 Actually these functions differ only in the default setting for the parameter typetypetypetype. The default setting for
points()points()points()points() is type = "p"type = "p"type = "p"type = "p", and for lines()lines()lines()lines() is type = "l"type = "l"type = "l"type = "l". Explicitly setting type = "p"type = "p"type = "p"type = "p"
causes either function to plot points, type = "l" type = "l" type = "l" type = "l" gives lines.

22

3.2 Fine control – Parameter settings
The default settings of parameters, such as character size, are often adequate. When it is necessary to change
parameter settings for a subsequent plot, the par()par()par()par() function does this. For example,

par(cex=1.25, mex=1.25) # character (cex) & margin (mex) expansionpar(cex=1.25, mex=1.25) # character (cex) & margin (mex) expansionpar(cex=1.25, mex=1.25) # character (cex) & margin (mex) expansionpar(cex=1.25, mex=1.25) # character (cex) & margin (mex) expansion

increases the text and plot symbol size 25% above the default. The addition of mex=1.25mex=1.25mex=1.25mex=1.25 makes room in the
margin to accommodate the increased text size.

On the first use of par()par()par()par() to make changes to the current device, it is often useful to store existing settings, so
that they can be restored later. For this, specify

oldpar <oldpar <oldpar <oldpar <---- par(cex=1.25, mex=1.25) par(cex=1.25, mex=1.25) par(cex=1.25, mex=1.25) par(cex=1.25, mex=1.25)

This stores the existing settings in oldparoldparoldparoldpar, then changes parameters (here cexcexcexcex and mexmexmexmex) as requested. To
restore the original parameter settings at some later time, enter par(oldpar)par(oldpar)par(oldpar)par(oldpar). Here is an example:

attach(elasattach(elasattach(elasattach(elasticband) ticband) ticband) ticband)

oldpar <oldpar <oldpar <oldpar <---- par(cex=1.5, mex=1.5) par(cex=1.5, mex=1.5) par(cex=1.5, mex=1.5) par(cex=1.5, mex=1.5)

plot(distance ~ stretch) plot(distance ~ stretch) plot(distance ~ stretch) plot(distance ~ stretch)

par(oldpar) # Restores the earlier settingspar(oldpar) # Restores the earlier settingspar(oldpar) # Restores the earlier settingspar(oldpar) # Restores the earlier settings

detach(elasticband) detach(elasticband) detach(elasticband) detach(elasticband)

Inside a function specify, e.g.
oldpar <oldpar <oldpar <oldpar <---- par(cex=1.25, mex=1.25) par(cex=1.25, mex=1.25) par(cex=1.25, mex=1.25) par(cex=1.25, mex=1.25)

on.exit(par(oldpar))on.exit(par(oldpar))on.exit(par(oldpar))on.exit(par(oldpar))

Type in help(par)help(par)help(par)help(par) to get details of all the parameter settings that are available with par()par()par()par().

3.2.1 Multiple plots on the one page

The parameter mfrowmfrowmfrowmfrow can be used to configure the graphics sheet so that subsequent plots appear row by row,
one after the other in a rectangular layout, on the one page. For a column by column layout, use mfcol mfcol mfcol mfcol
instead. In the example below we present four different transformations of the primates data, in a two by two
layout:

par(mfrow=c(2,2), pch=16)par(mfrow=c(2,2), pch=16)par(mfrow=c(2,2), pch=16)par(mfrow=c(2,2), pch=16)

data(Animals) # Needed if Animals (MASS librarydata(Animals) # Needed if Animals (MASS librarydata(Animals) # Needed if Animals (MASS librarydata(Animals) # Needed if Animals (MASS library) is not already loaded) is not already loaded) is not already loaded) is not already loaded

attach(Animals)attach(Animals)attach(Animals)attach(Animals)

plot(body, brain)plot(body, brain)plot(body, brain)plot(body, brain)

plot(sqrt(body), sqrt(brain))plot(sqrt(body), sqrt(brain))plot(sqrt(body), sqrt(brain))plot(sqrt(body), sqrt(brain))

plot((body)^0.1, (brain)^0.1)plot((body)^0.1, (brain)^0.1)plot((body)^0.1, (brain)^0.1)plot((body)^0.1, (brain)^0.1)

plot(log(body),log(brain))plot(log(body),log(brain))plot(log(body),log(brain))plot(log(body),log(brain))

detach(Animals)detach(Animals)detach(Animals)detach(Animals)

par(mfrow=c(1,1), pch=1) # Restore to 1 figure per pagepar(mfrow=c(1,1), pch=1) # Restore to 1 figure per pagepar(mfrow=c(1,1), pch=1) # Restore to 1 figure per pagepar(mfrow=c(1,1), pch=1) # Restore to 1 figure per page

3.2.2 The shape of the graph sheet

Often it is desirable to exercise control over the shape of the graph page, e.g. so that the individual plots are
rectangular rather than square. The R for Windows functions win.graph()win.graph()win.graph()win.graph() or x11()x11()x11()x11() that set up the
Windows screen take the parameters widthwidthwidthwidth (in inches), heightheightheightheight (in inches) and pointsizepointsizepointsizepointsize (in 1/72 of an
inch). The setting of pointsizepointsizepointsizepointsize (default =12) determines character heights. It is the relative sizes of these
parameters that matter for screen display or for incorporation into Word and similar programs. Graphs can be
enlarged or shrunk by pointing at one corner, holding down the left mouse button, and pulling.

23

3.3 Adding points, lines and text
Here is a simple example that shows how to use the function text()text()text()text() to add text labels to the points on a plot.

> primates> primates> primates> primates

 Bodywt Brainwt Bodywt Brainwt Bodywt Brainwt Bodywt Brainwt

 Potar monkey 10.0 115 Potar monkey 10.0 115 Potar monkey 10.0 115 Potar monkey 10.0 115

 Gorilla 207.0 406 Gorilla 207.0 406 Gorilla 207.0 406 Gorilla 207.0 406

 Human 62.0 1320 Human 62.0 1320 Human 62.0 1320 Human 62.0 1320

Rhesus monkey 6.8 179Rhesus monkey 6.8 179Rhesus monkey 6.8 179Rhesus monkey 6.8 179

 Chimp 52.2 440 Chimp 52.2 440 Chimp 52.2 440 Chimp 52.2 440

Observe that the row names store labels for each row20.
> attach(primates) # Needed if primates is not already attached.> attach(primates) # Needed if primates is not already attached.> attach(primates) # Needed if primates is not already attached.> attach(primates) # Needed if primates is not already attached.

> plot(Bodywt, Brainwt, xlim=c(5, 250))> plot(Bodywt, Brainwt, xlim=c(5, 250))> plot(Bodywt, Brainwt, xlim=c(5, 250))> plot(Bodywt, Brainwt, xlim=c(5, 250))

> # Specify xlim so that there is room for the labels> # Specify xlim so that there is room for the labels> # Specify xlim so that there is room for the labels> # Specify xlim so that there is room for the labels

> text(x=Bodywt, y=Brainwt, labels=row.names(primates), adj=0) > text(x=Bodywt, y=Brainwt, labels=row.names(primates), adj=0) > text(x=Bodywt, y=Brainwt, labels=row.names(primates), adj=0) > text(x=Bodywt, y=Brainwt, labels=row.names(primates), adj=0)

 # adj=0 implies left adjusted # adj=0 implies left adjusted # adj=0 implies left adjusted # adj=0 implies left adjusted text text text text

> detach(primates)> detach(primates)> detach(primates)> detach(primates)

Fig. 7 shows the result.

0 50 100 150 200 250

20
0

60
0

10
00

primates$Bodywt

pr
im

at
es

$B
ra

in
w

t

Potar monkey

Gorilla

Human

Rhesus monkey

Chimp

Figure 7: Plot of the primate data, with labels on points

Fig. 7 would be adequate for identifying points, but is not a presentation quality graph. We now show how to
improve it.

20 Row names can be created in several different ways. They can be assigned directly, e.g.

row.names(primates) <row.names(primates) <row.names(primates) <row.names(primates) <---- c("Potar monkey","Gorilla","Human","Rhesus monkey","Chimp") c("Potar monkey","Gorilla","Human","Rhesus monkey","Chimp") c("Potar monkey","Gorilla","Human","Rhesus monkey","Chimp") c("Potar monkey","Gorilla","Human","Rhesus monkey","Chimp")

When using read.table()read.table()read.table()read.table() to input data, the parameter row.namesrow.namesrow.namesrow.names is available to specify, by number or
name, a column that holds the row names.

24

In Fig. 8 we use the xlabxlabxlabxlab (x-axis) and ylabylabylabylab (y-axis) parameters to specify meaningful axis titles. We move the
labelling to one side of the points by including appropriate horizontal and vertical offsets. We use chw <chw <chw <chw <----
par()$cxy[1]par()$cxy[1]par()$cxy[1]par()$cxy[1] to get a 1-character space horizontal offset, and chh <chh <chh <chh <---- par()$cxy[2] par()$cxy[2] par()$cxy[2] par()$cxy[2] to get a 1-
character height vertical offset. I’ve used pch=16pch=16pch=16pch=16 to make the plot character a heavy black dot. This helps
make the points stand out against the labelling.

0 50 100 200 300

0
50

0
10

00
15

00

Body weight (kg)

Br
ai

n
w

ei
gh

t (
g)

Potar monkey

Gorilla

Human

Rhesus monkey

Chimp

Figure 8: Improved version of Fig. 7.

Here is the R code for Fig. 8:
attach(primates)attach(primates)attach(primates)attach(primates)

plot(x=Bodywt, y=Brainwt, pch=16, plot(x=Bodywt, y=Brainwt, pch=16, plot(x=Bodywt, y=Brainwt, pch=16, plot(x=Bodywt, y=Brainwt, pch=16,

 xlab="Body weight (kg)", ylab="Brain weight (g)", xlab="Body weight (kg)", ylab="Brain weight (g)", xlab="Body weight (kg)", ylab="Brain weight (g)", xlab="Body weight (kg)", ylab="Brain weight (g)",

 xlim=c(5,240), ylim=c(0,1500)) xlim=c(5,240), ylim=c(0,1500)) xlim=c(5,240), ylim=c(0,1500)) xlim=c(5,240), ylim=c(0,1500))

chw <chw <chw <chw <---- par()$cxy[1] par()$cxy[1] par()$cxy[1] par()$cxy[1]

chh <chh <chh <chh <---- par()$cxy[2] par()$cxy[2] par()$cxy[2] par()$cxy[2]

text(x=Bodywt+chw, y=Brainwt, text(x=Bodywt+chw, y=Brainwt, text(x=Bodywt+chw, y=Brainwt, text(x=Bodywt+chw, y=Brainwt,

 labels=row.names(pr labels=row.names(pr labels=row.names(pr labels=row.names(primates), adj=0)imates), adj=0)imates), adj=0)imates), adj=0)

To place the text to the left of the points, specify
text(x=Bodywttext(x=Bodywttext(x=Bodywttext(x=Bodywt---- 0.75*chw, y=Brainwt, 0.75*chw, y=Brainwt, 0.75*chw, y=Brainwt, 0.75*chw, y=Brainwt,

 labels=row.names(primates), adj=1) labels=row.names(primates), adj=1) labels=row.names(primates), adj=1) labels=row.names(primates), adj=1)

3.3.1 Size, colour and choice of plotting symbol

For plot()plot()plot()plot() and points()points()points()points() the parameter cexcexcexcex (“character expansion”) controls the size, while colcolcolcol
(“colour”) controls the colour of the plotting symbol. The parameter pchpchpchpch controls the choice of plotting
symbol.

The parameters cexcexcexcex and colcolcolcol may be used in a similar way with text()text()text()text(). Try
plot(1, 1, xlim=c(1, 7.5), ylim=cplot(1, 1, xlim=c(1, 7.5), ylim=cplot(1, 1, xlim=c(1, 7.5), ylim=cplot(1, 1, xlim=c(1, 7.5), ylim=c(0,5), type="n") # Do not plot points(0,5), type="n") # Do not plot points(0,5), type="n") # Do not plot points(0,5), type="n") # Do not plot points

points(1:7, rep(4.5, 7), cex=1:7, col=1:7, pch=0:6)points(1:7, rep(4.5, 7), cex=1:7, col=1:7, pch=0:6)points(1:7, rep(4.5, 7), cex=1:7, col=1:7, pch=0:6)points(1:7, rep(4.5, 7), cex=1:7, col=1:7, pch=0:6)

text(1:7,rep(3.5, 7), labels=paste(0:6), cex=1:7, col=1:7)text(1:7,rep(3.5, 7), labels=paste(0:6), cex=1:7, col=1:7)text(1:7,rep(3.5, 7), labels=paste(0:6), cex=1:7, col=1:7)text(1:7,rep(3.5, 7), labels=paste(0:6), cex=1:7, col=1:7)

The following, added to the plot that results from the above three statements, demonstrates other choices of pch.

25

points(1:7,rep(2,7), pch=(0:6)+7)points(1:7,rep(2,7), pch=(0:6)+7)points(1:7,rep(2,7), pch=(0:6)+7)points(1:7,rep(2,7), pch=(0:6)+7) # Plot symbols 7 to 13# Plot symbols 7 to 13# Plot symbols 7 to 13# Plot symbols 7 to 13

text((1:7)+0.25, rep(2,7), paste((0:6)+7)) # Label with symbol numbertext((1:7)+0.25, rep(2,7), paste((0:6)+7)) # Label with symbol numbertext((1:7)+0.25, rep(2,7), paste((0:6)+7)) # Label with symbol numbertext((1:7)+0.25, rep(2,7), paste((0:6)+7)) # Label with symbol number

points(1:7,rep(1,7), pch=(0:6)+14)points(1:7,rep(1,7), pch=(0:6)+14)points(1:7,rep(1,7), pch=(0:6)+14)points(1:7,rep(1,7), pch=(0:6)+14) # Plot symbols 14 to 20# Plot symbols 14 to 20# Plot symbols 14 to 20# Plot symbols 14 to 20

text((1:7)+0.25, rep(1,7), paste((0:6)+14)) # Labels wittext((1:7)+0.25, rep(1,7), paste((0:6)+14)) # Labels wittext((1:7)+0.25, rep(1,7), paste((0:6)+14)) # Labels wittext((1:7)+0.25, rep(1,7), paste((0:6)+14)) # Labels with symbol numberh symbol numberh symbol numberh symbol number

Here is the plot:

1 2 3 4 5 6 7

0
1

2
3

4
5

0 1 2 3456
7 8 9 10 11 12 13

14 15 16 17 18 19 20

Figure 9: Different plot symbols, colours and sizes

A variety of color palettes are available. Here is a function that displays some of the possibilities:
view.colours <view.colours <view.colours <view.colours <---- function(){ function(){ function(){ function(){

plot(1, 1, xlim=c(0,14), ylim=c(0,3plot(1, 1, xlim=c(0,14), ylim=c(0,3plot(1, 1, xlim=c(0,14), ylim=c(0,3plot(1, 1, xlim=c(0,14), ylim=c(0,3), type="n", axes=F, xlab="",ylab="")), type="n", axes=F, xlab="",ylab="")), type="n", axes=F, xlab="",ylab="")), type="n", axes=F, xlab="",ylab="")

text(1:6, rep(2.5,6), paste(1:6), col=palette()[1:6], cex=2.5)text(1:6, rep(2.5,6), paste(1:6), col=palette()[1:6], cex=2.5)text(1:6, rep(2.5,6), paste(1:6), col=palette()[1:6], cex=2.5)text(1:6, rep(2.5,6), paste(1:6), col=palette()[1:6], cex=2.5)

text(10, 2.5, "Default palette", adj=0)text(10, 2.5, "Default palette", adj=0)text(10, 2.5, "Default palette", adj=0)text(10, 2.5, "Default palette", adj=0)

rainchars <rainchars <rainchars <rainchars <---- c("R","O","Y","G","B","I","V") c("R","O","Y","G","B","I","V") c("R","O","Y","G","B","I","V") c("R","O","Y","G","B","I","V")

text(1:7, rep(1.5,7), rainchars, col=rainbow(7), cex=2.5)text(1:7, rep(1.5,7), rainchars, col=rainbow(7), cex=2.5)text(1:7, rep(1.5,7), rainchars, col=rainbow(7), cex=2.5)text(1:7, rep(1.5,7), rainchars, col=rainbow(7), cex=2.5)

text(10, 1.5,text(10, 1.5,text(10, 1.5,text(10, 1.5, "rainbow(7)", adj=0) "rainbow(7)", adj=0) "rainbow(7)", adj=0) "rainbow(7)", adj=0)

cmtxt <cmtxt <cmtxt <cmtxt <---- substring("cm.colors", 1:9,1:9) substring("cm.colors", 1:9,1:9) substring("cm.colors", 1:9,1:9) substring("cm.colors", 1:9,1:9)

 # Split “cm.colors” into its 9 characters # Split “cm.colors” into its 9 characters # Split “cm.colors” into its 9 characters # Split “cm.colors” into its 9 characters

text(1:9, rep(0.5,9), cmtxt, col=cm.colors(9), cex=3)text(1:9, rep(0.5,9), cmtxt, col=cm.colors(9), cex=3)text(1:9, rep(0.5,9), cmtxt, col=cm.colors(9), cex=3)text(1:9, rep(0.5,9), cmtxt, col=cm.colors(9), cex=3)

text(10, 0.5, "cm.colors(9)", adj=0)text(10, 0.5, "cm.colors(9)", adj=0)text(10, 0.5, "cm.colors(9)", adj=0)text(10, 0.5, "cm.colors(9)", adj=0)

}}}}

To run the function, enter
view.colours()view.colours()view.colours()view.colours()

3.3.2 Adding Text in the Margin

mtext(side, line, text, ..)mtext(side, line, text, ..)mtext(side, line, text, ..)mtext(side, line, text, ..) adds text in the margin of the current plot. The sides are numbered
1(x-axis), 2(y-axis), 3(top) and 4.

3.4 Identification and Location on the Figure Region
Two functions are available for this purpose. Draw the graph first, then call one or other of these functions.

! identify() labels points. One positions the cursor near the point that is to be identified, and clicks the
left mouse button.

26

! locator() prints out the co-ordinates of points. One positions the cursor at the location for which
coordinates are required, and clicks the left mouse button.

A click with the right mouse button signifies that the identification or location task is complete, unless the setting
of the parameter nnnn is reached first. For identify()identify()identify()identify() the default setting of nnnn is the number of data points,
while for locator()locator()locator()locator() the default setting is nnnn = 500.

3.4.1 identify()

This function requires specification of a vector xxxx, a vector yyyy, and a vector of text strings that are available for
use a labels. The data set floridafloridafloridaflorida has the votes for the various Presidential candidates, county by county in
the state of Florida. We plot the vote for Buchanan against the vote for Bush, then invoking identify()identify()identify()identify() so
that we can label selected points on the plot.

attach(florida)attach(florida)attach(florida)attach(florida)

plot(BUSH, BUCHANAN, xlab=”Bush”, ylab=”Buchanan”)plot(BUSH, BUCHANAN, xlab=”Bush”, ylab=”Buchanan”)plot(BUSH, BUCHANAN, xlab=”Bush”, ylab=”Buchanan”)plot(BUSH, BUCHANAN, xlab=”Bush”, ylab=”Buchanan”)

identify(BUSH, BUCHANAN, County)identify(BUSH, BUCHANAN, County)identify(BUSH, BUCHANAN, County)identify(BUSH, BUCHANAN, County)

detach(florida)detach(florida)detach(florida)detach(florida)

Click to the left or right, and slightly above or below a point, depending on the preferred positioning of the label.
When labelling is terminated (click with the right mouse button), the row numbers of the observations that have
been labelled are printed on the screen, in order.

3.4.2 locator()

Left click at the locations whose coordinates are required
attach(florida) # if not already attach(florida) # if not already attach(florida) # if not already attach(florida) # if not already attachedattachedattachedattached

plot(BUSH, BUCHANAN, xlab=”Bush”, ylab=”Buchanan”)plot(BUSH, BUCHANAN, xlab=”Bush”, ylab=”Buchanan”)plot(BUSH, BUCHANAN, xlab=”Bush”, ylab=”Buchanan”)plot(BUSH, BUCHANAN, xlab=”Bush”, ylab=”Buchanan”)

locator()locator()locator()locator()

detach(florida)detach(florida)detach(florida)detach(florida)

The function can be used to mark new points (specify type=”p”type=”p”type=”p”type=”p”) or lines (specify type=”l”type=”l”type=”l”type=”l”) or both points
and lines (specify type=”b”type=”b”type=”b”type=”b”).

3.5 Plots that show the distribution of data values
We discuss histograms, density plots, boxplots and normal probability plots.

3.5.1 Histograms

The shapes of histograms depend on the placement of the breaks, as Fig. 10 illustrates:

A: B reaks at 72.5 , 77.5 , ...

Total length

Fr
eq

ue
nc

y

75 80 85 90 95

0
5

10
15

20

B: B reaks at 75, 80, ...

Total length

Fr
eq

ue
nc

y

75 80 85 90 95 100

0
5

10
15

20

27

Figure 10: The two graphs show the same data, but with a different choice of breakpoints.

Here is the code used to plot the histograms:
par(mfrow = c(1, 2))par(mfrow = c(1, 2))par(mfrow = c(1, 2))par(mfrow = c(1, 2))

attach(possum)attach(possum)attach(possum)attach(possum)

here <here <here <here <---- sex == "f" sex == "f" sex == "f" sex == "f"

hist(totlngth[here], breaks = 72.5 + (0:5) * 5, ylim = c(0, 22),hist(totlngth[here], breaks = 72.5 + (0:5) * 5, ylim = c(0, 22),hist(totlngth[here], breaks = 72.5 + (0:5) * 5, ylim = c(0, 22),hist(totlngth[here], breaks = 72.5 + (0:5) * 5, ylim = c(0, 22),

 xlab="Total length", main ="A: Breaks at 7 xlab="Total length", main ="A: Breaks at 7 xlab="Total length", main ="A: Breaks at 7 xlab="Total length", main ="A: Breaks at 72.5, 77.5, ...")2.5, 77.5, ...")2.5, 77.5, ...")2.5, 77.5, ...")

hist(totlngth[here], breaks = 75 + (0:5) * 5, ylim = c(0, 22),hist(totlngth[here], breaks = 75 + (0:5) * 5, ylim = c(0, 22),hist(totlngth[here], breaks = 75 + (0:5) * 5, ylim = c(0, 22),hist(totlngth[here], breaks = 75 + (0:5) * 5, ylim = c(0, 22),

 xlab="Total length", main="B: Breaks at 75, 80, ...") xlab="Total length", main="B: Breaks at 75, 80, ...") xlab="Total length", main="B: Breaks at 75, 80, ...") xlab="Total length", main="B: Breaks at 75, 80, ...")

par(mfrow=c(1,1))par(mfrow=c(1,1))par(mfrow=c(1,1))par(mfrow=c(1,1))

detach(possum)detach(possum)detach(possum)detach(possum)

3.5.2 Density Plots

Density plots, now that they are available, are often a preferred alternative to a histogram. In Fig. 11 the
histograms from Figure 10 are overlaid with a density plot.

Total length

R
el

at
iv

e
Fr

eq
ue

nc
y

70 75 80 85 90 95 100

0.
00

0.
04

0.
08

Total length

R
el

at
iv

e
Fr

eq
ue

nc
y

70 75 80 85 90 95 100

0.
00

0.
04

0.
08

Figure 11: On each of the histograms from Fig. 11 a density plot has been overlaid.

Density plots do not depend on a choice of breakpoints. The choice of width and type of window, controlling
the nature and amount of smoothing, does affect the appearance of the plot. The main effect is to make it more
or less smooth.

The following will give a density plot:
attach(possum)attach(possum)attach(possum)attach(possum)

plot(density(totlngth[plot(density(totlngth[plot(density(totlngth[plot(density(totlngth[here]),type="l")here]),type="l")here]),type="l")here]),type="l")

detach(possum)detach(possum)detach(possum)detach(possum)

Note that in Fig. 10 the y-axis for the histogram is labelled so that the area of a rectangle is the frequency for that
rectangle. To get the plot on the left, specify:

attach(possum)attach(possum)attach(possum)attach(possum)

here <here <here <here <---- sex == "f" sex == "f" sex == "f" sex == "f"

dens <dens <dens <dens <---- density(totl density(totl density(totl density(totlngth[here])ngth[here])ngth[here])ngth[here])

xlim <xlim <xlim <xlim <---- range(dens$x) range(dens$x) range(dens$x) range(dens$x)

ylim <ylim <ylim <ylim <---- range(dens$y) range(dens$y) range(dens$y) range(dens$y)

hist(totlngth[here], breaks = 72.5 + (0:5) * 5, probability = T,hist(totlngth[here], breaks = 72.5 + (0:5) * 5, probability = T,hist(totlngth[here], breaks = 72.5 + (0:5) * 5, probability = T,hist(totlngth[here], breaks = 72.5 + (0:5) * 5, probability = T,

 xlim = xlim, ylim = ylim, xlab="Total length", main="") xlim = xlim, ylim = ylim, xlab="Total length", main="") xlim = xlim, ylim = ylim, xlab="Total length", main="") xlim = xlim, ylim = ylim, xlab="Total length", main="")

28

lines(dens)lines(dens)lines(dens)lines(dens)

detach(possum)detach(possum)detach(possum)detach(possum)

3.5.3 Boxplots

We now make a boxplot of the above data:
attach(possum)attach(possum)attach(possum)attach(possum)

boxplot(totlngth[here])boxplot(totlngth[here])boxplot(totlngth[here])boxplot(totlngth[here])

detach(possum)detach(possum)detach(possum)detach(possum)

Fig. 12 adds information that should assist in the interpretation of boxplots.

75
80

85
90

95

Larges t value
(ou tliers excepted)

upper quartile

median

lo wer qu artile

Smalles t valu e
(ou tliers excepted)

Outlier

85.25

90.5 Inter-qu artile ran ge
= 90.5 - 85.25
= 5.2

Compare
 0.75 x In ter-Quartile Range
 = 3.9
with s tan dard d eviation
 = 4.2

To
ta

l l
en

gt
h

(c
m

)

Figure 12: Boxplot of female possum lengths, with additional labelling
information.

3.5.4 Normal probability plots

qqnorm(y)qqnorm(y)qqnorm(y)qqnorm(y) gives a normal probability plot of the elements of yyyy. The points of this plot will lie approximately
on a straight line if the distribution is Normal. In order to calibrate the eye to recognise plots that indicate non-
normal variation, it is helpful to do several normal probability plots for random samples of the relevant size from
a normal distribution.

x11(width=8, height=6) # This is a better shape for this plotx11(width=8, height=6) # This is a better shape for this plotx11(width=8, height=6) # This is a better shape for this plotx11(width=8, height=6) # This is a better shape for this plot

attach(possum)attach(possum)attach(possum)attach(possum)

here <here <here <here <---- sex == "f" sex == "f" sex == "f" sex == "f"

par(mfrow=c(3,4)) # A 3 by 4 lapar(mfrow=c(3,4)) # A 3 by 4 lapar(mfrow=c(3,4)) # A 3 by 4 lapar(mfrow=c(3,4)) # A 3 by 4 layout of plotsyout of plotsyout of plotsyout of plots

y <y <y <y <---- totlngth[here] totlngth[here] totlngth[here] totlngth[here]

qqnorm(y,xlab="", ylab="Length", main="Possums") qqnorm(y,xlab="", ylab="Length", main="Possums") qqnorm(y,xlab="", ylab="Length", main="Possums") qqnorm(y,xlab="", ylab="Length", main="Possums")

for(i in 1:11)qqnorm(rnorm(43),xlab="",for(i in 1:11)qqnorm(rnorm(43),xlab="",for(i in 1:11)qqnorm(rnorm(43),xlab="",for(i in 1:11)qqnorm(rnorm(43),xlab="",

 ylab="Simulated lengths", main="Simulated") ylab="Simulated lengths", main="Simulated") ylab="Simulated lengths", main="Simulated") ylab="Simulated lengths", main="Simulated")

detach(possum)detach(possum)detach(possum)detach(possum)

29

Before continuing, type dev.off() # Before continuing, type dev.off() # Before continuing, type dev.off() # Before continuing, type dev.off()

Fig. 13 shows the plots. There is one unusually small value. Otherwise the points for the female possum lengths
are as close to a straight line as in many of the plots for random normal data.

....

-2 -1 0 1 2

75
85

95
Pos s ums

L
en

gt
h

-2 -1 0 1 2

-2
-1

0
1

S imulated

Si
m

ul
at

ed
 le

ng
th

s
-2 -1 0 1 2

-2
0

1
2

S imulated

Si
m

ul
at

ed
 le

ng
th

s

-2 -1 0 1 2

-2
0

1
2

S imulated

Si
m

ul
at

ed
 le

ng
th

s

-2 -1 0 1 2

-2
.0

-0
.5

1.
0

S imulated

Si
m

ul
at

ed
 le

ng
th

s

-2 -1 0 1 2

-2
0

1
2

S imulated

Si
m

ul
at

ed
 le

ng
th

s

-2 -1 0 1 2

-2
0

1
2

3

S imulated

Si
m

ul
at

ed
 le

ng
th

s
-2 -1 0 1 2

-2
0

1
2

S imulated

Si
m

ul
at

ed
 le

ng
th

s
-2 -1 0 1 2

-2
-1

0
1

2

S imulated

Si
m

ul
at

ed
 le

ng
th

s

-2 -1 0 1 2

-1
.5

0.
0

1.
0

S imulated

Si
m

ul
at

ed
 le

ng
th

s

-2 -1 0 1 2

-3
-1

0
1

S imulated

Si
m

ul
at

ed
 le

ng
th

s

-2 -1 0 1 2

-2
0

1

S imulated

Si
m

ul
at

ed
 le

ng
th

s

Figure 13: Normal probability plots. If data are from a normal distribution then points should
fall, approximately, along a line. The plot in the top left hand corner shows the 43 lengths of
female possums. The other plots are for independent normal random samples of size 43.

The idea is an important one. In order to judge whether data are normally distributed, examine a number of
randomly generated samples of the same size from a normal distribution. It is a way to train the eye.

By default, rnorm()rnorm()rnorm()rnorm() generates random samples from a distribution with mean 0 and standard deviation 1.

3.6 Other Useful Plotting Functions

For the functions demonstrated here, we use data on the heights of 100 female athletes21.

3.6.1 Scatterplot smoothing

panel.smooth()panel.smooth()panel.smooth()panel.smooth() plots points, then adds a smooth curve through the points. For example:
attach(ais)attach(ais)attach(ais)attach(ais)

here<here<here<here<---- sex sex sex sex=="f"=="f"=="f"=="f"

plot(pcBfat[here]~ht[here], xlab = “Height”, ylab = “% Body fat”)plot(pcBfat[here]~ht[here], xlab = “Height”, ylab = “% Body fat”)plot(pcBfat[here]~ht[here], xlab = “Height”, ylab = “% Body fat”)plot(pcBfat[here]~ht[here], xlab = “Height”, ylab = “% Body fat”)

panel.smooth(ht[here],pcBfat[here])panel.smooth(ht[here],pcBfat[here])panel.smooth(ht[here],pcBfat[here])panel.smooth(ht[here],pcBfat[here])

detach(ais)detach(ais)detach(ais)detach(ais)

21 Data relate to the paper: Telford, R.D. and Cunningham, R.B. 1991: Sex, sport and body-size dependency of
hematology in highly trained athletes. Medicine and Science in Sports and Exercise 23: 788-794.

30

3.6.2 Adding lines to plots

Use the function abline()abline()abline()abline() for this. The parameters may be an intercept and slope, or a vector that holds the
intercept and slope, or an lm object. Alternatively it is possible to draw a horizontal line (h = <height>), or a
vertical line (v = <ordinate>).

attach(ais)attach(ais)attach(ais)attach(ais)

here<here<here<here<---- sex=="f" sex=="f" sex=="f" sex=="f"

plot(pcBfat[here] ~ ht[here], xlab = “Height”, ylab = “% Body fat”)plot(pcBfat[here] ~ ht[here], xlab = “Height”, ylab = “% Body fat”)plot(pcBfat[here] ~ ht[here], xlab = “Height”, ylab = “% Body fat”)plot(pcBfat[here] ~ ht[here], xlab = “Height”, ylab = “% Body fat”)

abline(lm(pabline(lm(pabline(lm(pabline(lm(pcBfat[here] ~ ht[here]))cBfat[here] ~ ht[here]))cBfat[here] ~ ht[here]))cBfat[here] ~ ht[here]))

detach(ais)detach(ais)detach(ais)detach(ais)

3.6.3 Rugplots

By default rug(x) rug(x) rug(x) rug(x) adds, along the x-axis of the current plot, vertical bars showing the distribution of values of
xxxx. It can however be particularly useful for showing the actual values along the side of a boxplot. Fig. 14 shows
a boxplot of the distribution of height of female athletes, with a rugplot added on the y-axis.

15
0

16
0

17
0

18
0

19
0

Le
ng

th

Figure 14: Distribution of heights of female athletes.
The bars on the left plot show actual data values.

Here is the code
attachattachattachattach(ais)(ais)(ais)(ais)

here <here <here <here <---- sex == "f" sex == "f" sex == "f" sex == "f"

boxplot(ht[here], boxwex = 0.15, ylab = "Height")boxplot(ht[here], boxwex = 0.15, ylab = "Height")boxplot(ht[here], boxwex = 0.15, ylab = "Height")boxplot(ht[here], boxwex = 0.15, ylab = "Height")

rug(ht[here], side = 2)rug(ht[here], side = 2)rug(ht[here], side = 2)rug(ht[here], side = 2)

detach(ais)detach(ais)detach(ais)detach(ais)

The parameter boxwexboxwexboxwexboxwex controls the width of the boxplot.

3.6.4 Scatterplot matrices

Section 2.1.3 demonstrated the use of the pairs()pairs()pairs()pairs() function.

3.6.5 Dotplots

These can be a good alternative to barcharts. They have a much higher information to ink ratio! Try

31

data(islands) # if not already loadeddata(islands) # if not already loadeddata(islands) # if not already loadeddata(islands) # if not already loaded

dotplot(islands) # vector of named numeric valuesdotplot(islands) # vector of named numeric valuesdotplot(islands) # vector of named numeric valuesdotplot(islands) # vector of named numeric values

Unfortunately there are many names, and there is substantial overlap. The following is better, but shrinks the
sizes of the points so that they almost disappear:

dotplot(islands, cex=0.2)dotplot(islands, cex=0.2)dotplot(islands, cex=0.2)dotplot(islands, cex=0.2)

3.7 Plotting Mathematical Symbols
Both text()text()text()text() and mtext()mtext()mtext()mtext() will take an expression rather than a text string. InInInIn plot() plot() plot() plot(), either or both of
xlabxlabxlabxlab and ylabylabylabylab can be an expression. Fig. 15 was produced with

plot(x, y, xlab=”Radius”, ylab=expression(Area == pi*r^2))plot(x, y, xlab=”Radius”, ylab=expression(Area == pi*r^2))plot(x, y, xlab=”Radius”, ylab=expression(Area == pi*r^2))plot(x, y, xlab=”Radius”, ylab=expression(Area == pi*r^2))

0 10 20 30 40 50

0
20

00
40

00
60

00
80

00

R ad ius

A
re

a
=

πr
2

Figure 15: The y-axis label is a mathematical expression.

Notice that in expression(Area == pi*r^2)expression(Area == pi*r^2)expression(Area == pi*r^2)expression(Area == pi*r^2), there is a double equals sign (“==”==”==”==”), although what will
appear on the plot is Area = pi*r^2, with a single equals sign. The reason for this is that Area == pi*r^2Area == pi*r^2Area == pi*r^2Area == pi*r^2 is
a valid mathematical expression, while Area = pi*r^2Area = pi*r^2Area = pi*r^2Area = pi*r^2 is not.

See help(plotmath) for detailed information on the plotting of mathematical expressions. There is a further
example in chapter 12.

The final plot from
demo(graphics)demo(graphics)demo(graphics)demo(graphics)

shows some of the possibilities for plotting mathematical symbols.

3.8 Guidelines for Graphs
Design graphs to make their point tersely and clearly, with a minimum waste of ink. Label as necessary to
identify important features. In scatterplots the graph should attract the eye’s attention to the points that are
plotted, and to important grouping in the data. Use solid points, large enough to stand out relative to other
features, when there is little or no overlap.

When there is extensive overlap of plotting symbols, use open plotting symbols. Where points are dense,
overlapping points will give a high ink density, which is exactly what one wants.

Use scatterplots in preference to bar or related graphs whenever the horizontal axis represents a quantitative
effect.

32

Use graphs from which information can be read directly and easily in preference to those that rely on visual
impression and perspective. Thus in scientific papers contour plots are much preferable to surface plots or two-
dimensional bar graphs.

Draw graphs so that reduction and reproduction will not interfere with visual clarity.

Explain clearly how error bars should be interpreted — ± SE limits, ± 95% confidence interval, ± SD limits, or
whatever. Explain what source of `error(s)’ is represented. It is pointless to present information on a source of
error that is of little or no interest, for example analytical error when the relevant source of `error’ for
comparison of treatments is between fruit.

Use colour or different plotting symbols to distinguish different groups. Take care to use colours that contrast.

The list of references at the end of this chapter has further comments on graphical and other presentation issues.

3.9 Exercises
1. Plot the graph of brain weight (brainbrainbrainbrain) versus body weight (bodybodybodybody) for the data set Animals Animals Animals Animals from the
MASS library. Label the axes appropriately.
[To access this data frame, specify library(mass); data(Animals)library(mass); data(Animals)library(mass); data(Animals)library(mass); data(Animals)]

2. Repeat the plot 1, but this time plotting log(brain weight) versus log(body weight). Use the row labels to label
the points with the three largest body weight values. Label the axes in untransformed units.

3. Repeat the plots 1 and 2, but this time place the plots side by side on the one page.

4. The data set huronhuronhuronhuron that accompanies these notes has mean July average water surface elevations, in feet,
IGLD (1955) for Harbor Beach, Michigan, on Lake Huron, Station 5014, for 1860-198622. (Alternatively you
can work with the vector LakeHuronLakeHuronLakeHuronLakeHuron from the ts library, that has mean heights for 1875-1772 only.)

a) Plot mean.heightmean.heightmean.heightmean.height against year.

b) Use the identify function to determine which years correspond to the lowest and highest mean levels.
That is, type

 identify(huron$year,huron$mean.height,labels=huron$year)identify(huron$year,huron$mean.height,labels=huron$year)identify(huron$year,huron$mean.height,labels=huron$year)identify(huron$year,huron$mean.height,labels=huron$year)

and use the left mouse button to click on the lowest point and highest point on the plot. To quit, press
both mouse buttons simultaneously.

c) As in the case of many time series, the mean levels are correlated from year to year. To see how
each year's mean level is related to the previous year's mean level, use

 lag.plot(huron$mean.height) lag.plot(huron$mean.height) lag.plot(huron$mean.height) lag.plot(huron$mean.height)

This plots the mean level at year i against the mean level at year i-1.

5. Check the distributions of head lengths (hdlngthhdlngthhdlngthhdlngth) in the possumpossumpossumpossum
23 data set that accompanies these notes.

Compare the following forms of display:

a) a histogram (hist(possum$hdlngth)hist(possum$hdlngth)hist(possum$hdlngth)hist(possum$hdlngth)))));

b) a stem and leaf plot (stem(qqnorm(possum$hdlngth)stem(qqnorm(possum$hdlngth)stem(qqnorm(possum$hdlngth)stem(qqnorm(possum$hdlngth)))));

c) a normal probability plot (qqnorm(possum$hdlngth)qqnorm(possum$hdlngth)qqnorm(possum$hdlngth)qqnorm(possum$hdlngth))))); and

d) a density plot (plot(density(possum$hdlngth))plot(density(possum$hdlngth))plot(density(possum$hdlngth))plot(density(possum$hdlngth))....

What are the advantages and disadvantages of these different forms of display?

22 Source: Great Lakes Water Levels, 1860-1986. U.S. Dept. of Commerce, National Oceanic and
AtmosphericAdministration, National Ocean Survey.
23 Data relate to the paper: Lindenmayer, D. B., Viggers, K. L., Cunningham, R. B., and Donnelly, C. F. 1995.
Morphological variation among populations of the mountain brush tail possum, Trichosurus caninus Ogilby
(Phalangeridae: Marsupialia). Australian Journal of Zoology 43: 449-458.

33

6. Try x <x <x <x <---- rnorm(10) rnorm(10) rnorm(10) rnorm(10). Print out the numbers that you get. Look up the help for rnormrnormrnormrnorm. Now generate a
sample of size 10 from a normal distribution with mean 170 and standard deviation 4.

7. Use mfrow()mfrow()mfrow()mfrow() to set up the layout for a 3 by 4 array of plots. In the top 4 rows, show normal probability
plots (section 3.4.2) for four separate `random’ samples of size 10, all from a normal distribution. In the middle
4 rows, display plots for samples of size 100. In the bottom four rows, display plots for samples of size 1000.
Comment on how the appearance of the plots changes as the sample size changes.

8. The function runif()runif()runif()runif() can be used to generate a sample from a uniform distribution, by default on the
interval 0 to 1. Try x <x <x <x <---- runif(10) runif(10) runif(10) runif(10), and print out the numbers you get. Then repeat exercise 6 above, but
taking samples from a uniform distribution rather than from a normal distribution. What shape do the points
follow?

*9. If you find exercise 8 interesting, you might like to try it for some further distributions. For example x <x <x <x <----
rchisq(10,1)rchisq(10,1)rchisq(10,1)rchisq(10,1) will generate 10 random values from a chi-squared distribution with degrees of freedom 1.
The statement x <x <x <x <---- rt(10,1) rt(10,1) rt(10,1) rt(10,1) will generate 10 random values from a t distribution with degrees of freedom
one. Make normal probability plots for samples of various sizes from these distributions.

10. For the first two columns of the data frame hillshillshillshills, examine the distribution using:

(a) histograms

(b) density plots

(c) normal probability plots.

Repeat (a), (b) and (c), now working with the logarithms of the data values.

3.10 References
Bell Lab's Trellis Page: http://cm.bell-labs.com/cm/ms/departments/sia/project/trellis/

Becker, R.A., Cleveland, W.S. and Shyu, M. The Visual Design and Control of Trellis Display. Journal of
Computational and Graphical Statistics.

Cleveland, W. S. 1993. Visualizing Data. Hobart Press, Summit, New Jersey.

Cleveland, W. S. 1985. The Elements of Graphing Data. Wadsworth, Monterey, California.

Maindonald J H 1992. Statistical design, analysis and presentation issues. New Zealand Journal of Agricultural
Research 35: 121-141.

Tufte, E. R. 1983. The Visual Display of Quantitative Information. Graphics Press, Cheshire, Connecticut,
U.S.A.

Tufte, E. R. 1990. Envisioning Information. Graphics Press, Cheshire, Connecticut, U.S.A.

Tufte, E. R. 1997. Visual Explanations. Graphics Press, Cheshire, Connecticut, U.S.A.

Wainer, H. 1997. Visual Revelations. Springer-Verlag, New York

http://cm.bell-labs.com/cm/ms/departments/sia/project/trellis/

34

35

4. Lattice graphics, and coplot()
Lattice plots allow the use of the layout on the page to reflect meaningful aspects of data structure. They offer
abilities similar to those in the S-PLUS trellis library.

At the time of writing the implementation of the lattice library was incomplete, though already with impressive
functionality. The lattice library sits on top of the grid library. To use lattice graphics, both these libraries must
be installed. Providing it is installed, the grid library will be loaded automatically when lattice is loaded.

The older coplot()coplot()coplot()coplot() function that is in the base library has some of same abilities as xyplot()xyplot()xyplot()xyplot(), but with a
limitation to two conditioning factors or variables only.

4.1 Examples that Present Panels of Scatterplots – Using xyplot()
The basic function for drawing panels of scatterplots is xyplot()xyplot()xyplot()xyplot(). We will use the data frame tintingtintingtintingtinting
(supplied) to demonstrate the use of xyplot()xyplot()xyplot()xyplot(). These data are from an experiment that investigated the
effects of tinting of car windows on visual performance24. The authors were mainly interested in visual
recognition tasks that would be performed when looking through side windows.

In this data frame, csoacsoacsoacsoa (critical stimulus onset asynchrony, i.e. the time in milliseconds required to recognise
an alphanumeric target), itititit (inspection time, i. e. the time required for a simple discrimination task) and
ageageageage are variables, tinttinttinttint (level of tinting: no, lo, hi) and targettargettargettarget (contrast: locon, hicon) are ordered factors,
sexsexsexsex (1 = male, 2 = female) and agegpagegpagegpagegp (1 = young, in the early 20s; 2 = an older participant, in the early 70s)
are factors. Fig. 16 shows the style of graph that one can get from xyplot(). The different symbols are different
contrasts.

it

cs
oa

+
++++

+++++ ++

+++
+
+
+
++ + +++
++++
+++++

+
++

20

40

60

80

100

120

50 100 150 200

 f
 young

+++++
++
+

++++

+
+++

 m
 young

+
+ ++

+
++ +

++++++++

 f
 elderly

+
+
++

++ ++
++++

++
+++

++
+

+
+

++
++
+

+
+

+ +
+ ++ +

+

20

40

60

80

100

120

 m
 elderly

50 100 150 200

Figure 16: csoa versus it, for each combination of females/males and elderly/young.
The two targets (low, + = high contrast) are shown with different symbols.

In a simplified version of Fig. 16 above, we might plot csoacsoacsoacsoa against itititit for each combination of sexsexsexsex and
agegpagegpagegpagegp. For this simplified version, it would be enough to type:

24 Data relate to the paper: Burns, N. R., Nettlebeck, T., White, M. and Willson, J. 1999. Effects of car window tinting on
visual performance: a comparison of elderly and young drivers. Ergonomics 42: 428-443.

36

xyplot(csxyplot(csxyplot(csxyplot(csoa ~ it | sex * agegp, data=tinting) # Simple use of xyplot()oa ~ it | sex * agegp, data=tinting) # Simple use of xyplot()oa ~ it | sex * agegp, data=tinting) # Simple use of xyplot()oa ~ it | sex * agegp, data=tinting) # Simple use of xyplot()

Here is the statement used to get Fig. 16. The two different symbols distinguish between low contrast and high
contrast targets.

xyplot(csoa~it|sex*agegp, data=tinting, panel=panel.superpose,xyplot(csoa~it|sex*agegp, data=tinting, panel=panel.superpose,xyplot(csoa~it|sex*agegp, data=tinting, panel=panel.superpose,xyplot(csoa~it|sex*agegp, data=tinting, panel=panel.superpose,

 groups=target) groups=target) groups=target) groups=target)

If colour is available, different colours will be used for the different groups.

A striking feature is that the very high values, for both csoacsoacsoacsoa and itititit, occur only for elderly males. It is apparent
that the long response times for some of the elderly males occur, as we might have expected, with the low
contrast target. We now put smooth curves through the data, separately for the two target types:

xyplot(csoa~it|sex*agegp, data=tinting, panel=panel.superpose, xyplot(csoa~it|sex*agegp, data=tinting, panel=panel.superpose, xyplot(csoa~it|sex*agegp, data=tinting, panel=panel.superpose, xyplot(csoa~it|sex*agegp, data=tinting, panel=panel.superpose,

 groups=target, type="s") groups=target, type="s") groups=target, type="s") groups=target, type="s")

The relationship between csoacsoacsoacsoa and itititit seems much the same for both levels of contrast.

Finally, we do a plot (Fig. 17) that uses different symbols (in black and white) for different levels of tinting. The
longest times are for the high level of tinting.

xyploxyploxyploxyplot(csoa~it|sex*agegp, data=tinting, panel=panel.superpose, t(csoa~it|sex*agegp, data=tinting, panel=panel.superpose, t(csoa~it|sex*agegp, data=tinting, panel=panel.superpose, t(csoa~it|sex*agegp, data=tinting, panel=panel.superpose,

 groups=tint) groups=tint) groups=tint) groups=tint)

it

cs
oa

++
++
++
+
+

+
+ ++

+
++

+

++
>>
>>

>>

>>>> >>
> >>>> >20

40

60

80

100

120

50 100 150 200

 f
 young

++
++++ ++>>
>>>> >>

 m
 young

++
++
+ ++ + >>
> >

>>> >

 f
 elderly

+
+

++
++

+
+

+
+

++
+

+
+ ++

+

> >
>>

>>

>
>

> > > >
>

>

>

>

>
>

20

40

60

80

100

120

 m
 elderly

50 100 150 200

Figure 17: csoa versus it, for each combination of females/males and elderly/young.
The different levels of tinting (no, +=low, >=high) are shown with different symbols.

An incomplete list of lattice Functions
splom(~ data.frame) # Scatterplot matrixsplom(~ data.frame) # Scatterplot matrixsplom(~ data.frame) # Scatterplot matrixsplom(~ data.frame) # Scatterplot matrix

bwplot(factor ~ numeric , . .) # Box and whisker plotbwplot(factor ~ numeric , . .) # Box and whisker plotbwplot(factor ~ numeric , . .) # Box and whisker plotbwplot(factor ~ numeric , . .) # Box and whisker plot

qqmath(factor ~ numeric , . .)qqmath(factor ~ numeric , . .)qqmath(factor ~ numeric , . .)qqmath(factor ~ numeric , . .) # normal probability plots# normal probability plots# normal probability plots# normal probability plots

dotplot(factor ~ numeric , . .) # 1dotplot(factor ~ numeric , . .) # 1dotplot(factor ~ numeric , . .) # 1dotplot(factor ~ numeric , . .) # 1----dim. Displadim. Displadim. Displadim. Displayyyy

stripplot(factor ~ numeric , . .) # 1stripplot(factor ~ numeric , . .) # 1stripplot(factor ~ numeric , . .) # 1stripplot(factor ~ numeric , . .) # 1----dim. Displaydim. Displaydim. Displaydim. Display

barchart(character ~ numeric , . .)barchart(character ~ numeric , . .)barchart(character ~ numeric , . .)barchart(character ~ numeric , . .)

histogram(~ numeric , . .)histogram(~ numeric , . .)histogram(~ numeric , . .)histogram(~ numeric , . .)

densityplot(~ numeric , . .) # Smoothed version of histogramdensityplot(~ numeric , . .) # Smoothed version of histogramdensityplot(~ numeric , . .) # Smoothed version of histogramdensityplot(~ numeric , . .) # Smoothed version of histogram

qqmath(~ numeric , . .) qqmath(~ numeric , . .) qqmath(~ numeric , . .) qqmath(~ numeric , . .)

splom(~ dataframe, . .)splom(~ dataframe, . .)splom(~ dataframe, . .)splom(~ dataframe, . .) # Scatterplot mat# Scatterplot mat# Scatterplot mat# Scatterplot matrix rix rix rix

parallel(~ dataframe, . .)parallel(~ dataframe, . .)parallel(~ dataframe, . .)parallel(~ dataframe, . .) # Parallel coordinate plots# Parallel coordinate plots# Parallel coordinate plots# Parallel coordinate plots

37

In each instance, one can add conditioning variables.

4.2 Using coplot()
The lattice library makes coplot()coplot()coplot()coplot() largely redundant. It may still be useful if the lattice library is not
available, or if one wants its particular layout and labelling.
We again use data from the data frame tintingtintingtintingtinting. Here are two possibilities. All plot csoacsoacsoacsoa against itititit for
each combination of tinttinttinttint and targettargettargettarget.

coplot(csoa~it|tint+target, data=tinting)coplot(csoa~it|tint+target, data=tinting)coplot(csoa~it|tint+target, data=tinting)coplot(csoa~it|tint+target, data=tinting)

coplot(csoa~it|ticoplot(csoa~it|ticoplot(csoa~it|ticoplot(csoa~it|tint+target, pch=as.integer(tinting$agegp), nt+target, pch=as.integer(tinting$agegp), nt+target, pch=as.integer(tinting$agegp), nt+target, pch=as.integer(tinting$agegp),

 data=tinting, panel=panel.smooth) data=tinting, panel=panel.smooth) data=tinting, panel=panel.smooth) data=tinting, panel=panel.smooth)

 # Different symbols for different agegroups, and show smooth # Different symbols for different agegroups, and show smooth # Different symbols for different agegroups, and show smooth # Different symbols for different agegroups, and show smooth

 # We need as.integer(tinting$agegp) because agegp is a factor # We need as.integer(tinting$agegp) because agegp is a factor # We need as.integer(tinting$agegp) because agegp is a factor # We need as.integer(tinting$agegp) because agegp is a factor

The second command uses different colours for the different colours for males and females. The third command
adds a smooth. The fourth command uses different symbols for males and females, and a smooth.

Where conditioning is on a continuous variable, coplot()coplot()coplot()coplot() will break it down into ranges that, if default
settings are used, overlap. The parameter numbernumbernumbernumber controls the number of ranges, and overlapoverlapoverlapoverlap controls the
fraction of overlap. For example

coplot(time ~ distance | climb, data=hills, overlap=0.5, number=3)coplot(time ~ distance | climb, data=hills, overlap=0.5, number=3)coplot(time ~ distance | climb, data=hills, overlap=0.5, number=3)coplot(time ~ distance | climb, data=hills, overlap=0.5, number=3)

By default overlapoverlapoverlapoverlap is 0.5, i.e. each successive pair of categories have around half their values in common.

The panel function plots what appears in any panel. Users can supply their own panel function. For an example
of such a function, examine panel.smooth()panel.smooth()panel.smooth()panel.smooth().

4.3 Exercises

1. The following data gives milk volume (g/day) for smoking and nonsmoking mothers25:
 Smoking Mothers: 621, 793, 593, 545, 753, 655, 895, 767, 714, 598, 693
 Nonsmoking Mothers: 947, 945, 1086, 1202, 973, 981, 930, 745, 903, 899, 961
Present the data (i) in side by side boxplots; (ii) using a dotchart form of display.

2. Repeat the plot as in exercise 1, but this time including a scatterplot smooth on each panel.
3. For the possum data set, generate the following plots:

a) histograms of hdlngthhdlngthhdlngthhdlngth – use hist()hist()hist()hist();

b) normal probability plots of hdlngthhdlngthhdlngthhdlngth – use qqnorm()qqnorm()qqnorm()qqnorm();

c) density plots of hdlngthhdlngthhdlngthhdlngth – use plot(density())plot(density())plot(density())plot(density()). Investigate the effect of varying the density
bandwidth (bwbwbwbw).

4. The following exercises relate to the data frame possumpossumpossumpossum that accompanies these notes:
(a) Using the coplotcoplotcoplotcoplot function, explore the relation between hdlngthhdlngthhdlngthhdlngth and totlngthtotlngthtotlngthtotlngth, taking into account
sexsexsexsex and PopPopPopPop.
(b) Construct a contour plot of chestchestchestchest versus bellybellybellybelly and totlngthtotlngthtotlngthtotlngth.
(c) Construct box and whisker plots for hdlngthhdlngthhdlngthhdlngth, using sitesitesitesite as a factor.
(d) Construct normal probability plots for hdlgthhdlgthhdlgthhdlgth, for each separate level of sexsexsexsex and PopPopPopPop. Is there evidence
that the distribution of hdlgth hdlgth hdlgth hdlgth varies with the level of these other factors.

6. The frame airqualityairqualityairqualityairquality that is in the base library has columns OzoneOzoneOzoneOzone, Solar.RSolar.RSolar.RSolar.R, WindWindWindWind, TempTempTempTemp, MonthMonthMonthMonth
and DayDayDayDay. Plot OzoneOzoneOzoneOzone against Solar.RSolar.RSolar.RSolar.R for each of three temperature ranges, and each of three wind ranges.

25 Data are from the paper ``Smoking During Pregnancy and Lactation and Its Effects on Breast Milk Volume''
(Amer. J. of Clinical Nutrition).

38

39

5. Linear (Multiple Regression) Models and Analysis of Variance

5.1 The Model Formula in Straight Line Regression
We begin with the straight line regression example that appeared earlier, in section 2.1.4. First we plot the data:

plot(distance ~ stretch, data=elasticband)plot(distance ~ stretch, data=elasticband)plot(distance ~ stretch, data=elasticband)plot(distance ~ stretch, data=elasticband)

The code for the regression calculation is:
elastic.lm <elastic.lm <elastic.lm <elastic.lm <---- lm(distance ~ stretch, data=elasticband) lm(distance ~ stretch, data=elasticband) lm(distance ~ stretch, data=elasticband) lm(distance ~ stretch, data=elasticband)

Here distance ~distance ~distance ~distance ~ stretch stretch stretch stretch is a model formula. Other model formulae will appear in the course of this
chapter. Fig. 18 shows the plot:

42 44 46 48 50 52 54

12
0

14
0

16
0

18
0

stretch

di
st

an
ce

Figure 18: Plot of distance versus stretch for the elastic
band data, with fitted least squares line

The output from the regression is an lmlmlmlm object, which we have called elastic.lmelastic.lmelastic.lmelastic.lm . Now examine a summary
of the regression results. Notice that the output documents the model formula that was used:

> options(digits=4)> options(digits=4)> options(digits=4)> options(digits=4)

> summary(elastic.lm)> summary(elastic.lm)> summary(elastic.lm)> summary(elastic.lm)

Call:Call:Call:Call:

lm(formula = distance ~ stretch, data = ellm(formula = distance ~ stretch, data = ellm(formula = distance ~ stretch, data = ellm(formula = distance ~ stretch, data = elasticband)asticband)asticband)asticband)

Residuals:Residuals:Residuals:Residuals:

 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

 2.107 2.107 2.107 2.107 ----0.321 18.000 1.893 0.321 18.000 1.893 0.321 18.000 1.893 0.321 18.000 1.893 ----27.786 13.321 27.786 13.321 27.786 13.321 27.786 13.321 ----7.214 7.214 7.214 7.214

Coefficients:Coefficients:Coefficients:Coefficients:

 Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|)

(Intercept) (Intercept) (Intercept) (Intercept) ----63.57 74.33 63.57 74.33 63.57 74.33 63.57 74.33 ----0.86 0.4310.86 0.4310.86 0.4310.86 0.431

stretcstretcstretcstretch 4.55 1.54 2.95 0.032h 4.55 1.54 2.95 0.032h 4.55 1.54 2.95 0.032h 4.55 1.54 2.95 0.032

40

Residual standard error: 16.3 on 5 degrees of freedomResidual standard error: 16.3 on 5 degrees of freedomResidual standard error: 16.3 on 5 degrees of freedomResidual standard error: 16.3 on 5 degrees of freedom

Multiple RMultiple RMultiple RMultiple R----Squared: 0.635, Adjusted RSquared: 0.635, Adjusted RSquared: 0.635, Adjusted RSquared: 0.635, Adjusted R----squared: 0.562 squared: 0.562 squared: 0.562 squared: 0.562

FFFF----statistic: 8.71 on 1 and 5 degrees of freedom, pstatistic: 8.71 on 1 and 5 degrees of freedom, pstatistic: 8.71 on 1 and 5 degrees of freedom, pstatistic: 8.71 on 1 and 5 degrees of freedom, p----value: 0.0319 value: 0.0319 value: 0.0319 value: 0.0319

5.2 Regression Objects
An lmlmlmlm object is a list of named elements. Above, we created the object elastic.lmelastic.lmelastic.lmelastic.lm . Here are the names of
its elements:

> names(> names(> names(> names(elasticelasticelasticelastic.lm).lm).lm).lm)

 [1] "coefficients" "residuals" "effects" "rank" [1] "coefficients" "residuals" "effects" "rank" [1] "coefficients" "residuals" "effects" "rank" [1] "coefficients" "residuals" "effects" "rank"

 [5] "fitted.values" "assign" "qr" [5] "fitted.values" "assign" "qr" [5] "fitted.values" "assign" "qr" [5] "fitted.values" "assign" "qr" "df.residual" "df.residual" "df.residual" "df.residual"

 [9] "xlevels" "call" "terms" "model" [9] "xlevels" "call" "terms" "model" [9] "xlevels" "call" "terms" "model" [9] "xlevels" "call" "terms" "model"

Various functions are available for extracting information that you might want from the list. This is better than
manipulating the list directly. Examples are:

> coe> coe> coe> coef(elastic.lm)f(elastic.lm)f(elastic.lm)f(elastic.lm)

(Intercept) stretch (Intercept) stretch (Intercept) stretch (Intercept) stretch

 ----63.571 4.554 63.571 4.554 63.571 4.554 63.571 4.554

> resid(elastic.lm)> resid(elastic.lm)> resid(elastic.lm)> resid(elastic.lm)

 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

 2.1071 2.1071 2.1071 2.1071 ----0.3214 18.0000 1.8929 0.3214 18.0000 1.8929 0.3214 18.0000 1.8929 0.3214 18.0000 1.8929 ----27.7857 13.3214 27.7857 13.3214 27.7857 13.3214 27.7857 13.3214 ----7.2143 7.2143 7.2143 7.2143

The function most often used to inspect regression output is summary()summary()summary()summary(). It extracts the information that users
are most likely to want. For example, in section 5.1, we had

summary(summary(summary(summary(elasticelasticelasticelastic.lm).lm).lm).lm)

There is a plot method for lmlmlmlm objects that gives the diagnostic information shown in Fig. 19.

130 150 170

-3
0

-1
0

0
10

20

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

5

3
6

-1.0 0.0 0.5 1.0

-3
0

-1
0

0
10

20

Theoretical Quantiles

St
an

da
rd

iz
ed

 R
es

id
ua

ls

N ormal Q-Q plot

5

36

130 150 170

0
1

2
3

4
5

Fitted values

re
si

du
al

s

Scale-Location plot

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

Obs . number

C
oo

k'
s

di
st

an
ce

Cook's distance plot
5

6

3

Fig. 19: Diagnostic plot of lm object, obtained by plot(elastic.lm)plot(elastic.lm)plot(elastic.lm)plot(elastic.lm).

To get Fig. 19, type:

41

par(mfrow = c(2, 2))par(mfrow = c(2, 2))par(mfrow = c(2, 2))par(mfrow = c(2, 2))

plot(plot(plot(plot(elasticelasticelasticelastic.lm).lm).lm).lm)

By default the first, second and fourth plot use the row names to identify the three most extreme residuals. [If
explicit row names are not given for the data frame, then the row numbers are used.]

5.3 Model Formulae, and the X Matrix
The model formula for the elastic band example was distance ~ stretchdistance ~ stretchdistance ~ stretchdistance ~ stretch . The model formula is a recipe
for setting up the calculations. All the calculations described in this chapter require the use of an model matrix
or X matrix, and a vector y of values of the dependent variable. For some of the examples we discuss later, it
helps to know what the X matrix looks like. Details for the elastic band example follow.

The X matrix, with the y-vector alongside, is:

X y

 Stretch (mm) Distance (cm)

 1 46 148
 1 54 182
 1 48 173
 1 50 166
 1 44 109
 1 42 141
 1 52 166

Essentially, the model matrix relates to the part of the model that appears to the right of the equals sign. The
straight line model is

 y = a + b x + residual

which we write as

 y = 1× a + x × b + residual

The parameters that are to be estimated are a and b. Fitted values are given by multiplying each column of the
model matrix by its corresponding parameter, i.e. the first column by a and the second column by b, and adding.
Another name is predicted values. The aim is to reproduce, as closely as possible, the values in the y-column.
The residuals are the differences between the values in the y-column and the fitted values. Least squares
regression, which is the form of regression that we describe in this course, chooses a and b so that the sum of
squares of the residuals is as small as possible.

The function model.matrix() model.matrix() model.matrix() model.matrix() prints out the model matrix. Thus:
> model.matrix(distance ~ stretch, data=elasticband)> model.matrix(distance ~ stretch, data=elasticband)> model.matrix(distance ~ stretch, data=elasticband)> model.matrix(distance ~ stretch, data=elasticband)

(Intercept) stretch(Intercept) stretch(Intercept) stretch(Intercept) stretch

1111 1 46 1 46 1 46 1 46

2 1 542 1 542 1 542 1 54

3 1 483 1 483 1 483 1 48

4 1 504 1 504 1 504 1 50

5 1 445 1 445 1 445 1 44

6 1 426 1 426 1 426 1 42

7 1 527 1 527 1 527 1 52

attr(,"assign")attr(,"assign")attr(,"assign")attr(,"assign")

[1] 0 1[1] 0 1[1] 0 1[1] 0 1

Another possibility, with elastic.lmelastic.lmelastic.lmelastic.lm as in section 5.1, is:
model.matrix(elastimodel.matrix(elastimodel.matrix(elastimodel.matrix(elastic.lm)c.lm)c.lm)c.lm)

42

The following are the fitted values and residuals that we get with the estimates of a (= -63.6) and b (= 4.55) that
result from least squares regression:

X ŷ y yy ˆ−

 Stretch (mm) (Fitted) (Observed) (Residual)

× -63.6 × 4.55 1 × -63.6 + 4.55 × Stretch Distance (mm) Observed -
Fitted

 1 46 -63.6 + 4.55 × 46 = 145.7 148 148-145.7 = 2.3

 1 54 -63.6 + 4.55 × 54 = 182.1 182 182-182.1 = -0.1

 1 48 -63.6 + 4.55 × 48 = 154.8 173 173-154.8 =
18.2

 1 50 -63.6 + 4.55 × 50 = 163.9 166 166-163.9 = 2.1

 1 44 -63.6 + 4.55 × 44 = 136.6 109 109-136.6 = -
27.6

 1 42 -63.6 + 4.55 × 42 = 127.5 141 141-127.5 =
13.5

 1 52 -63.6 + 4.55 × 52 = 173.0 166 166-173.0 = -7.0

Note that we use ŷ [pronounced y-hat] as the symbol for predicted values.

We might alternatively fit the simpler (no intercept) model. For this we have

 y = x × b + e

where e is a random variable with mean 0. The X matrix then consists of a single column, the x’s.

5.3.1 Model Formulae in General
Model formulae take a form such as:

y~x+zy~x+zy~x+zy~x+z : lm, glm,, etc.

y~x + fac + fac:x y~x + fac + fac:x y~x + fac + fac:x y~x + fac + fac:x : lm, glm, aov, etc. (If facfacfacfac is a factor and xxxx is a variable, fac:xfac:xfac:xfac:x allows a
different slope for each different level of facfacfacfac.)

Model formulae are widely used to set up most of the model calculations in R.

Notice the similarity between model formulae and the formulae that are used for specifying coplots. Thus, recall
that the graph formula for a coplot that gives a plot of yyyy against x x x x for each different combination of levels of
fac1fac1fac1fac1 (across the page) and fac2fac2fac2fac2 (up the page) is:

y ~ x | fac1+fac2y ~ x | fac1+fac2y ~ x | fac1+fac2y ~ x | fac1+fac2

*5.3.2 Manipulating Model Formulae
Model formulae can be assigned, e.g.

formyxz <- formula(y~x+z)

or
formyxz <- formula(“y~x+z”)

The argument to formula()formula()formula()formula() can, as just demonstrated, be a text string. This makes it straightforward to paste
the argument together from components that are stored in text strings. For example

> names(elasticband)> names(elasticband)> names(elasticband)> names(elasticband)

[1] "stretch" "distance"[1] "stretch" "distance"[1] "stretch" "distance"[1] "stretch" "distance"

> nam <> nam <> nam <> nam <---- names(elasticband) names(elasticband) names(elasticband) names(elasticband)

43

> formds <> formds <> formds <> formds <---- formula(paste(nam[1],"~",nam[2])) formula(paste(nam[1],"~",nam[2])) formula(paste(nam[1],"~",nam[2])) formula(paste(nam[1],"~",nam[2]))

> lm(formds, data=elasticband)> lm(formds, data=elasticband)> lm(formds, data=elasticband)> lm(formds, data=elasticband)

Call:Call:Call:Call:

lm(formula = formds, data = elasticband)lm(formula = formds, data = elasticband)lm(formula = formds, data = elasticband)lm(formula = formds, data = elasticband)

Coefficients:Coefficients:Coefficients:Coefficients:

(Intercept) dista(Intercept) dista(Intercept) dista(Intercept) distance nce nce nce

 26.3780 0.1395 26.3780 0.1395 26.3780 0.1395 26.3780 0.1395

Note that graphics formulae can be manipulated in exactly the same way as model formulae.

5.4 Multiple Linear Regression Models

5.4.1 The data frame Rubber
The data set RubberRubberRubberRubber from the MASS library is from the accelerated testing of tyre rubber26. The variables are
losslosslossloss (the abrasion loss in gm/hr), hardhardhardhard (hardness in `Shore’ units), and tenstenstenstens (tensile strength in kg/sq m).

We obtain a scatterplot matrix (Fig. 20) thus:
library(mass) # if neededlibrary(mass) # if neededlibrary(mass) # if neededlibrary(mass) # if needed

data(Rubber) # if neededdata(Rubber) # if neededdata(Rubber) # if neededdata(Rubber) # if needed

pairpairpairpairs(Rubber)s(Rubber)s(Rubber)s(Rubber)

lo ss

5 0 7 0 9 0

50
15

0
30

0

50
70

90

h ard

5 0 1 50 3 00

t ens

12
0

16
0

20
0

24
0

1 20 1 60 2 00 2 40
Figure 20: Scatterplot matrix for the Rubber data frame from the
mass library.

There is a negative correlation between loss and hardness. We proceed to regress loss on hardhardhardhard and tenstenstenstens.

26 The original source is O.L. Davies (1947) Statistical Methods in Research and Production. Oliver and Boyd,
Table 6.1 p. 119.

44

Rubber.lm <Rubber.lm <Rubber.lm <Rubber.lm <---- lm(loss~hard+tens, data=Rubber) lm(loss~hard+tens, data=Rubber) lm(loss~hard+tens, data=Rubber) lm(loss~hard+tens, data=Rubber)

> options(dig> options(dig> options(dig> options(digits=3)its=3)its=3)its=3)

> summary(Rubber.lm)> summary(Rubber.lm)> summary(Rubber.lm)> summary(Rubber.lm)

Call:Call:Call:Call:

lm(formula = loss ~ hard + tens, data = Rubber)lm(formula = loss ~ hard + tens, data = Rubber)lm(formula = loss ~ hard + tens, data = Rubber)lm(formula = loss ~ hard + tens, data = Rubber)

Residuals:Residuals:Residuals:Residuals:

 Min 1Q Median 3Q Max Min 1Q Median 3Q Max Min 1Q Median 3Q Max Min 1Q Median 3Q Max

----79.38 79.38 79.38 79.38 ----14.61 3.82 19.75 65.98 14.61 3.82 19.75 65.98 14.61 3.82 19.75 65.98 14.61 3.82 19.75 65.98

Coefficients:Coefficients:Coefficients:Coefficients:

 Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|)

(Intercept) 885.161 (Intercept) 885.161 (Intercept) 885.161 (Intercept) 885.161 61.752 14.33 3.8e61.752 14.33 3.8e61.752 14.33 3.8e61.752 14.33 3.8e----14141414

hard hard hard hard ----6.571 0.583 6.571 0.583 6.571 0.583 6.571 0.583 ----11.27 1.0e11.27 1.0e11.27 1.0e11.27 1.0e----11111111

tens tens tens tens ----1.374 0.194 1.374 0.194 1.374 0.194 1.374 0.194 ----7.07 1.3e7.07 1.3e7.07 1.3e7.07 1.3e----07070707

Residual standard error: 36.5 on 27 degrees of freedomResidual standard error: 36.5 on 27 degrees of freedomResidual standard error: 36.5 on 27 degrees of freedomResidual standard error: 36.5 on 27 degrees of freedom

Multiple RMultiple RMultiple RMultiple R----Squared: 0.84, Adjusted RSquared: 0.84, Adjusted RSquared: 0.84, Adjusted RSquared: 0.84, Adjusted R----squared: 0.828 squared: 0.828 squared: 0.828 squared: 0.828

FFFF----statistic: 71 ostatistic: 71 ostatistic: 71 ostatistic: 71 on 2 and 27 degrees of freedom, pn 2 and 27 degrees of freedom, pn 2 and 27 degrees of freedom, pn 2 and 27 degrees of freedom, p----value: 1.77evalue: 1.77evalue: 1.77evalue: 1.77e----011 011 011 011

The examination of diagnostic plots is left as an exercise.

5.4.2 Weights of Books
The books to which the data in the data set oddbooksoddbooksoddbooksoddbooks (accompanying these notes) refer were chosen to cover a
wide range of weight to height ratios. Here are the data:

> oddbooks> oddbooks> oddbooks> oddbooks

 thick height width weight thick height width weight thick height width weight thick height width weight

1 14 30.5 23.0 10751 14 30.5 23.0 10751 14 30.5 23.0 10751 14 30.5 23.0 1075

2 15 29.1 20.5 9402 15 29.1 20.5 9402 15 29.1 20.5 9402 15 29.1 20.5 940

3 18 27.5 18.5 6253 18 27.5 18.5 6253 18 27.5 18.5 6253 18 27.5 18.5 625

4 23 23.2 15.2 4004 23 23.2 15.2 4004 23 23.2 15.2 4004 23 23.2 15.2 400

5 24 21.6 14.0 5505 24 21.6 14.0 5505 24 21.6 14.0 5505 24 21.6 14.0 550

6 25 23.5 156 25 23.5 156 25 23.5 156 25 23.5 15.5 600.5 600.5 600.5 600

7 28 19.7 12.6 4507 28 19.7 12.6 4507 28 19.7 12.6 4507 28 19.7 12.6 450

8 28 19.8 12.6 4508 28 19.8 12.6 4508 28 19.8 12.6 4508 28 19.8 12.6 450

9 29 17.3 10.5 3009 29 17.3 10.5 3009 29 17.3 10.5 3009 29 17.3 10.5 300

10 30 22.8 15.4 69010 30 22.8 15.4 69010 30 22.8 15.4 69010 30 22.8 15.4 690

11 36 17.8 11.0 40011 36 17.8 11.0 40011 36 17.8 11.0 40011 36 17.8 11.0 400

12 44 13.5 9.2 25012 44 13.5 9.2 25012 44 13.5 9.2 25012 44 13.5 9.2 250

Notice that as thickness increases, weight reduces.
> logbooks <> logbooks <> logbooks <> logbooks <---- log(od log(od log(od log(oddbooks) # We might expect weight to bedbooks) # We might expect weight to bedbooks) # We might expect weight to bedbooks) # We might expect weight to be

> # proportional to thick * height * width> # proportional to thick * height * width> # proportional to thick * height * width> # proportional to thick * height * width

> logbooks.lm1<> logbooks.lm1<> logbooks.lm1<> logbooks.lm1<----lm(weight~thick,data=logbooks)lm(weight~thick,data=logbooks)lm(weight~thick,data=logbooks)lm(weight~thick,data=logbooks)

> summary(logbooks.lm1)$coef> summary(logbooks.lm1)$coef> summary(logbooks.lm1)$coef> summary(logbooks.lm1)$coef

 Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.69 (Intercept) 9.69 (Intercept) 9.69 (Intercept) 9.69 0.708 13.7 8.35e 0.708 13.7 8.35e 0.708 13.7 8.35e 0.708 13.7 8.35e----08080808

thick thick thick thick ----1.07 0.219 1.07 0.219 1.07 0.219 1.07 0.219 ----4.9 6.26e4.9 6.26e4.9 6.26e4.9 6.26e----04040404

> logbooks.lm2<> logbooks.lm2<> logbooks.lm2<> logbooks.lm2<----lm(weight~thick+height,data=logbooks)lm(weight~thick+height,data=logbooks)lm(weight~thick+height,data=logbooks)lm(weight~thick+height,data=logbooks)

45

> summary(logbooks.lm2)$coef> summary(logbooks.lm2)$coef> summary(logbooks.lm2)$coef> summary(logbooks.lm2)$coef

 Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|)

(Intercept) (Intercept) (Intercept) (Intercept) ----1.263 3.552 1.263 3.552 1.263 3.552 1.263 3.552 ----0.356 0.73030.356 0.73030.356 0.73030.356 0.7303

thick 0.313 0.472 0.662 0.5243thick 0.313 0.472 0.662 0.5243thick 0.313 0.472 0.662 0.5243thick 0.313 0.472 0.662 0.5243

height 2.114 0.678 3.117 0.0124height 2.114 0.678 3.117 0.0124height 2.114 0.678 3.117 0.0124height 2.114 0.678 3.117 0.0124

> logbooks.lm3<> logbooks.lm3<> logbooks.lm3<> logbooks.lm3<----lm(weight~thick+height+width,data=logbooks)lm(weight~thick+height+width,data=logbooks)lm(weight~thick+height+width,data=logbooks)lm(weight~thick+height+width,data=logbooks)

> summary(logbooks.lm3)$coef> summary(logbooks.lm3)$coef> summary(logbooks.lm3)$coef> summary(logbooks.lm3)$coef

 Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|)

(Intercept) (Intercept) (Intercept) (Intercept) ----0.70.70.70.719 3.216 19 3.216 19 3.216 19 3.216 ----0.224 0.8290.224 0.8290.224 0.8290.224 0.829

thick 0.465 0.434 1.070 0.316thick 0.465 0.434 1.070 0.316thick 0.465 0.434 1.070 0.316thick 0.465 0.434 1.070 0.316

height 0.154 1.273 0.121 0.907height 0.154 1.273 0.121 0.907height 0.154 1.273 0.121 0.907height 0.154 1.273 0.121 0.907

width 1.877 1.070 1.755 0.117width 1.877 1.070 1.755 0.117width 1.877 1.070 1.755 0.117width 1.877 1.070 1.755 0.117

So is weightweightweightweight proportional to thick * height * widththick * height * widththick * height * widththick * height * width?

The correlations between thickthickthickthick, heightheightheightheight and widthwidthwidthwidth are so strong that if one tries to use more than one of
them as a explanatory variables, the coefficients are ill-determined. They contain very similar information, as is
evident from the scatterplot matrix. The regressions on heiheiheiheightghtghtght and widthwidthwidthwidth give plausible results, while the
coefficient of the regression on thickthickthickthick is entirely an artefact of the way that the books were selected.

The design of the data collection really is important for the interpretation of coefficients from a regression
equation. Even though regression equations from observational data may work quite well for predictive
purposes, the individual coefficients may be misleading. This is more than an academic issue, as the analyses in
Lalonde (1986) demonstrate27. They had data from experimental “treatment” and “control” groups, and also
from two comparable non-experimental “controls”. The regression estimate of the treatment effect, when
comparison was with one of the non-experimental controls, was statistically significant but with the wrong sign!
The regression should be fitted only to that part of the data where values of the covariates overlap substantially.
Dehejia and Wahba demonstrate the use of scores (“propensities”) that may be used both to identify subsets that
are defensibly comparable. Propensities values are then the only covariate in the equation that estimates the
treatment effect.

5.5 Polynomial and Spline Regression
We show how calculations that have the same structure as multiple linear regression may be used to model a
curvilinear response. We build up curves from linear combinations of transformed values. A warning is that the
use of polynomial curves of high degree are in general unsatisfactory. Spline curves, constructed by joining low
order polynomial curves (typically cubics) in such a way that the slope changes smoothly, are in general
preferable.

5.5.1 Polynomial Terms in Linear Models

The data frame seedratesseedratesseedratesseedrates
28 that accompanies these notes gives, for each of a number of different seeding

rates, the number of barley grain per head.
plot(grain ~ rate, data=seedrates) # Plot the dataplot(grain ~ rate, data=seedrates) # Plot the dataplot(grain ~ rate, data=seedrates) # Plot the dataplot(grain ~ rate, data=seedrates) # Plot the data

Fig. 21 shows the data, with fitted quadratic curve:

27 Dehejia and Wahba (1999) revisit Lalonde’s data, demonstrating the use of a methodology that was able to
reproduce results similar to the experimental results.
28 Data are from McLeod, C. C. (1982) Effect of rates of seeding on barley grown for grain. New Zealand
Journal of Agriculture 10: 133-136. Summary details are in Maindonald, J. H. (1992).

46

60 80 100 120 140
18

.0
19

.0
20

.0
21

.0

Seeding rate

G
ra

in
s

pe
r h

ea
d

Figure 21: Number of grain per head versus seeding rate,
for the barley seeding rate data, with fitted quadratic curve.

We will need an X-matrix with a column of ones, a column of values of raterateraterate, and a column of values of
raterateraterate2. For this, both raterateraterate and I(rate^2)I(rate^2)I(rate^2)I(rate^2) must be included in the model formula.

> seedrates.lm2 <> seedrates.lm2 <> seedrates.lm2 <> seedrates.lm2 <---- lm(grain ~ rate+I(rate^2), data=se lm(grain ~ rate+I(rate^2), data=se lm(grain ~ rate+I(rate^2), data=se lm(grain ~ rate+I(rate^2), data=seedrates)edrates)edrates)edrates)

> summary(seedrates.lm2)> summary(seedrates.lm2)> summary(seedrates.lm2)> summary(seedrates.lm2)

Call:Call:Call:Call:

lm(formula = grain ~ rate + I(rate^2), data = seedrates)lm(formula = grain ~ rate + I(rate^2), data = seedrates)lm(formula = grain ~ rate + I(rate^2), data = seedrates)lm(formula = grain ~ rate + I(rate^2), data = seedrates)

Residuals:Residuals:Residuals:Residuals:

 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

 0.04571 0.04571 0.04571 0.04571 ----0.12286 0.09429 0.12286 0.09429 0.12286 0.09429 0.12286 0.09429 ----0.00286 0.00286 0.00286 0.00286 ----0.01429 0.01429 0.01429 0.01429

Coefficients:Coefficients:Coefficients:Coefficients:

 Estimate Std. Error t valu Estimate Std. Error t valu Estimate Std. Error t valu Estimate Std. Error t value Pr(>|t|)e Pr(>|t|)e Pr(>|t|)e Pr(>|t|)

(Intercept) 24.060000 0.455694 52.80 0.00036(Intercept) 24.060000 0.455694 52.80 0.00036(Intercept) 24.060000 0.455694 52.80 0.00036(Intercept) 24.060000 0.455694 52.80 0.00036

rate rate rate rate ----0.066686 0.009911 0.066686 0.009911 0.066686 0.009911 0.066686 0.009911 ----6.73 0.021386.73 0.021386.73 0.021386.73 0.02138

I(rate^2) 0.000171 0.000049 3.50 0.07294I(rate^2) 0.000171 0.000049 3.50 0.07294I(rate^2) 0.000171 0.000049 3.50 0.07294I(rate^2) 0.000171 0.000049 3.50 0.07294

Residual standard error: 0.115 on 2 degrees of freedomResidual standard error: 0.115 on 2 degrees of freedomResidual standard error: 0.115 on 2 degrees of freedomResidual standard error: 0.115 on 2 degrees of freedom

Multiple RMultiple RMultiple RMultiple R----Squared: 0.996, AdjusteSquared: 0.996, AdjusteSquared: 0.996, AdjusteSquared: 0.996, Adjusted Rd Rd Rd R----squared: 0.992 squared: 0.992 squared: 0.992 squared: 0.992

FFFF----statistic: 256 on 2 and 2 degrees of freedom, pstatistic: 256 on 2 and 2 degrees of freedom, pstatistic: 256 on 2 and 2 degrees of freedom, pstatistic: 256 on 2 and 2 degrees of freedom, p----value: 0.0039 value: 0.0039 value: 0.0039 value: 0.0039

> hat <> hat <> hat <> hat <---- predict(seedrates.lm2) predict(seedrates.lm2) predict(seedrates.lm2) predict(seedrates.lm2)

> lines(spline(seedrates$rate, hat))> lines(spline(seedrates$rate, hat))> lines(spline(seedrates$rate, hat))> lines(spline(seedrates$rate, hat))

> # Placing the spline fit through the fitted points allows a smooth curve.> # Placing the spline fit through the fitted points allows a smooth curve.> # Placing the spline fit through the fitted points allows a smooth curve.> # Placing the spline fit through the fitted points allows a smooth curve.

> # For this to wo> # For this to wo> # For this to wo> # For this to work the values of seedrates$rate must be ordered.rk the values of seedrates$rate must be ordered.rk the values of seedrates$rate must be ordered.rk the values of seedrates$rate must be ordered.

Again, check the form of the model matrix. Type in:
> model.matrix(grain~rate+I(rate^2),data=seedrates)> model.matrix(grain~rate+I(rate^2),data=seedrates)> model.matrix(grain~rate+I(rate^2),data=seedrates)> model.matrix(grain~rate+I(rate^2),data=seedrates)

 (Intercept) rate I(rate^2) (Intercept) rate I(rate^2) (Intercept) rate I(rate^2) (Intercept) rate I(rate^2)

1 1 50 25001 1 50 25001 1 50 25001 1 50 2500

2 1 75 56252 1 75 56252 1 75 56252 1 75 5625

3 1 3 1 3 1 3 1 100 10000 100 10000 100 10000 100 10000

47

4 1 125 156254 1 125 156254 1 125 156254 1 125 15625

5 1 150 225005 1 150 225005 1 150 225005 1 150 22500

attr(,"assign")attr(,"assign")attr(,"assign")attr(,"assign")

[1] 0 1 2[1] 0 1 2[1] 0 1 2[1] 0 1 2

This example demonstrates a way to extend linear models to handle specific types of non-linear relationships.
We can use any transformation we wish to form columns of the model matrix. We could, if we wished, add an
x3 column.

Once the model matrix has been formed, we are limited to taking linear combinations of columns.

5.5.2 What order of polynomial?

A polynomial of degree 2, i.e. a quadratic curve, looked about right for the above data. How does one check?

One way is to fit polynomials, e.g. of each of degrees 1 and 2, and compare them thus:
> seedrates.lm1<> seedrates.lm1<> seedrates.lm1<> seedrates.lm1<----lm(grain~rate,data=seedrates)lm(grain~rate,data=seedrates)lm(grain~rate,data=seedrates)lm(grain~rate,data=seedrates)

> seedrates.lm2<> seedrates.lm2<> seedrates.lm2<> seedrates.lm2<----lm(grain~rate+I(rate^2),data=seedrates)lm(grain~rate+I(rate^2),data=seedrates)lm(grain~rate+I(rate^2),data=seedrates)lm(grain~rate+I(rate^2),data=seedrates)

> anova(se> anova(se> anova(se> anova(seedrates.lm2,seedrates.lm1)edrates.lm2,seedrates.lm1)edrates.lm2,seedrates.lm1)edrates.lm2,seedrates.lm1)

Analysis of Variance TableAnalysis of Variance TableAnalysis of Variance TableAnalysis of Variance Table

Model 1: grain ~ rate + I(rate^2)Model 1: grain ~ rate + I(rate^2)Model 1: grain ~ rate + I(rate^2)Model 1: grain ~ rate + I(rate^2)

Model 2: grain ~ rateModel 2: grain ~ rateModel 2: grain ~ rateModel 2: grain ~ rate

 Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F) Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F) Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F) Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 2 0.026286 1 2 0.026286 1 2 0.026286 1 2 0.026286

2 3 0.187000 2 3 0.187000 2 3 0.187000 2 3 0.187000 ----1 1 1 1 ----0.160714 12.228 0.07290.160714 12.228 0.07290.160714 12.228 0.07290.160714 12.228 0.07294444

The F-value is large, but on this evidence there are too few degrees of freedom to make a totally convincing case
for preferring a quadratic to a line. However the paper from which these data come gives an independent
estimate of the error mean square (0.17 on 35 d.f.) based on 8 replicate results that were averaged to give each
value for number of grains per head. If we compare the change in the sum of squares (0.1607, on 1 df) with a
mean square of 0.172 (35 df), the F-value is now 5.4 on 1 and 35 degrees of freedom, and we have p=0.024 .
The increase in the number of degrees of freedom more than compensates for the reduction in the F-statistic.

> # However we have an independent estimate of the error mean > # However we have an independent estimate of the error mean > # However we have an independent estimate of the error mean > # However we have an independent estimate of the error mean

> # square. The estimate is 0.17^2, on 35 df.> # square. The estimate is 0.17^2, on 35 df.> # square. The estimate is 0.17^2, on 35 df.> # square. The estimate is 0.17^2, on 35 df.

> 1> 1> 1> 1----pf(0.16/0.17^2, 1, 35)pf(0.16/0.17^2, 1, 35)pf(0.16/0.17^2, 1, 35)pf(0.16/0.17^2, 1, 35)

[1] 0.0244[1] 0.0244[1] 0.0244[1] 0.0244

Finally note that R2 was 0.972 for the straight line model. This may seem good, but given the accuracy of these
data it was not good enough! The statistic is an inadequate guide to whether a model is adequate. Even for any
one context, R2 will in general increase as the range of the values of the dependent variable increases. (R2 is
larger when there is more variation to be explained.) A predictive model is adequate when the standard errors of
predicted values are acceptably small, not when R2 achieves some magic threshold.

5.5.3 Pointwise confidence bounds for the fitted curve
Here is code that will give pointwise 95% confidence bounds. Note that these do not combine to give a
confidence region for the total curve! The construction of such a region is a much more complicated task!

plot(grain ~ rate, data = seedrates, pch = 16, xlim = c(50, 175), ylimplot(grain ~ rate, data = seedrates, pch = 16, xlim = c(50, 175), ylimplot(grain ~ rate, data = seedrates, pch = 16, xlim = c(50, 175), ylimplot(grain ~ rate, data = seedrates, pch = 16, xlim = c(50, 175), ylim

 = c(15.5, 22),xlab="Seeding rate",ylab="Grains per head") = c(15.5, 22),xlab="Seeding rate",ylab="Grains per head") = c(15.5, 22),xlab="Seeding rate",ylab="Grains per head") = c(15.5, 22),xlab="Seeding rate",ylab="Grains per head")

new.df <new.df <new.df <new.df <---- data.frame(rate = c((4:14) * data.frame(rate = c((4:14) * data.frame(rate = c((4:14) * data.frame(rate = c((4:14) * 12.5))12.5))12.5))12.5))

seedrates.lm2 <seedrates.lm2 <seedrates.lm2 <seedrates.lm2 <---- lm(grain ~ rate + I(rate^2), data = seedrates) lm(grain ~ rate + I(rate^2), data = seedrates) lm(grain ~ rate + I(rate^2), data = seedrates) lm(grain ~ rate + I(rate^2), data = seedrates)

pred2 <pred2 <pred2 <pred2 <---- predict(seedrates.lm2, newdata = new.df, interval="confidence") predict(seedrates.lm2, newdata = new.df, interval="confidence") predict(seedrates.lm2, newdata = new.df, interval="confidence") predict(seedrates.lm2, newdata = new.df, interval="confidence")

hat2 <hat2 <hat2 <hat2 <---- data.frame(fit=pred2[,"fit"],lower=pred2[,"lwr"], data.frame(fit=pred2[,"fit"],lower=pred2[,"lwr"], data.frame(fit=pred2[,"fit"],lower=pred2[,"lwr"], data.frame(fit=pred2[,"fit"],lower=pred2[,"lwr"],

 upper=pred2[,"upr"]) upper=pred2[,"upr"]) upper=pred2[,"upr"]) upper=pred2[,"upr"])

attach(new.df)attach(new.df)attach(new.df)attach(new.df)

48

lines(rate, hat2lines(rate, hat2lines(rate, hat2lines(rate, hat2$fit)$fit)$fit)$fit)

lines(rate,hat2$lower,lty=2)lines(rate,hat2$lower,lty=2)lines(rate,hat2$lower,lty=2)lines(rate,hat2$lower,lty=2)

lines(rate, hat2$upper,lty=2)lines(rate, hat2$upper,lty=2)lines(rate, hat2$upper,lty=2)lines(rate, hat2$upper,lty=2)

detach(new.df)detach(new.df)detach(new.df)detach(new.df)

The extrapolation has deliberately been taken beyond the range of the data, in order to show how the confidence
bounds spread out. Confidence bounds for a fitted line spread out more slowly, but are even less believable!

5.5.4 Spline Terms in Linear Models
By now, readers of this document will be used to the idea that it is possible to use linear models to fit terms that
may be highly nonlinear functions of one or more of the variables. The fitting of polynomial functions was a
simple example of this. Spline functions variables extend this idea further. The splines that I demonstrate are
constructed by joining together cubic curves, in such a way the joins are smooth. The places where the cubics
join are known as `knots’. It turns out that, once the knots are fixed, and depending on the class of spline curves
that are used, spline functions of a variable can be constructed as a linear combination of basis functions, where
each basis function is a transformation of the variable.

The data frame carscarscarscars is in the base library.
> data(cars)> data(cars)> data(cars)> data(cars)

> plot(dist~speed,data=cars)> plot(dist~speed,data=cars)> plot(dist~speed,data=cars)> plot(dist~speed,data=cars)

> library(splines)> library(splines)> library(splines)> library(splines)

> cars.lm<> cars.lm<> cars.lm<> cars.lm<----lm(dist~bs(speed),data=cars) # By default, there are no knotslm(dist~bs(speed),data=cars) # By default, there are no knotslm(dist~bs(speed),data=cars) # By default, there are no knotslm(dist~bs(speed),data=cars) # By default, there are no knots

> hat<> hat<> hat<> hat<----predict(cars.lmpredict(cars.lmpredict(cars.lmpredict(cars.lm))))

> lines(cars$speed,hat,lty=3) # NB assumes values of speed are sorted> lines(cars$speed,hat,lty=3) # NB assumes values of speed are sorted> lines(cars$speed,hat,lty=3) # NB assumes values of speed are sorted> lines(cars$speed,hat,lty=3) # NB assumes values of speed are sorted

> cars.lm5 <> cars.lm5 <> cars.lm5 <> cars.lm5 <---- lm(dist~bs(speed,5),data=cars) lm(dist~bs(speed,5),data=cars) lm(dist~bs(speed,5),data=cars) lm(dist~bs(speed,5),data=cars)

 # try for a closer fit (1 knot) # try for a closer fit (1 knot) # try for a closer fit (1 knot) # try for a closer fit (1 knot)

> ci5<> ci5<> ci5<> ci5<----predict(cars.lm5,interval="confidence",se.fit=T)predict(cars.lm5,interval="confidence",se.fit=T)predict(cars.lm5,interval="confidence",se.fit=T)predict(cars.lm5,interval="confidence",se.fit=T)

> names(ci5)> names(ci5)> names(ci5)> names(ci5)

[1] "fit" [1] "fit" [1] "fit" [1] "fit" "se.fit" "df" "residual.scale" "se.fit" "df" "residual.scale" "se.fit" "df" "residual.scale" "se.fit" "df" "residual.scale"

> lines(cars$speed,ci5$fit[,"fit"])> lines(cars$speed,ci5$fit[,"fit"])> lines(cars$speed,ci5$fit[,"fit"])> lines(cars$speed,ci5$fit[,"fit"])

> lines(cars$speed,ci5$fit[,"lwr"],lty=2)> lines(cars$speed,ci5$fit[,"lwr"],lty=2)> lines(cars$speed,ci5$fit[,"lwr"],lty=2)> lines(cars$speed,ci5$fit[,"lwr"],lty=2)

> lines(cars$speed,ci5$fit[,"upr"],lty=2)> lines(cars$speed,ci5$fit[,"upr"],lty=2)> lines(cars$speed,ci5$fit[,"upr"],lty=2)> lines(cars$speed,ci5$fit[,"upr"],lty=2)

5.6 Using Factors in R Models
Factors are crucial for specifying R models that include categorical or “factor” variables,. Consider data from an
experiment that compared houses with and without cavity insulation29. While one would not usually handle
these calculations using an lmlmlmlm model, it makes a simple example to illustrate the choice of a baseline level, and a
set of contrasts. Different choices, although they fit equivalent models, give output in which some of the
numbers are different and must be interpreted differently.

We begin by entering the data from the command line:
insulatiinsulatiinsulatiinsulation <on <on <on <---- factor(c(rep("without", 8), rep("with", 7))) factor(c(rep("without", 8), rep("with", 7))) factor(c(rep("without", 8), rep("with", 7))) factor(c(rep("without", 8), rep("with", 7)))

 # 8 without, then 7 with# 8 without, then 7 with# 8 without, then 7 with# 8 without, then 7 with

 # `with’ precedes `without’ in alphanumeric order, & is the baseline # `with’ precedes `without’ in alphanumeric order, & is the baseline # `with’ precedes `without’ in alphanumeric order, & is the baseline # `with’ precedes `without’ in alphanumeric order, & is the baseline

kWh <kWh <kWh <kWh <---- c(10225, 10689, 14683, 6584, 8541, 12086, 12467, c(10225, 10689, 14683, 6584, 8541, 12086, 12467, c(10225, 10689, 14683, 6584, 8541, 12086, 12467, c(10225, 10689, 14683, 6584, 8541, 12086, 12467,

 12669, 9708, 6700, 4307, 10315, 8017, 8162, 802212669, 9708, 6700, 4307, 10315, 8017, 8162, 802212669, 9708, 6700, 4307, 10315, 8017, 8162, 802212669, 9708, 6700, 4307, 10315, 8017, 8162, 8022))))

To formulate this as a regression model, we take kWh as the dependent variable, and the factor insulation as the
explanatory variable.

29 Data are from Hand, D. J.; Daly, F.; Lunn, A. D.; Ostrowski, E., eds. (1994). A Handbook of Small Data
Sets. Chapman and Hall.

49

> insulation <> insulation <> insulation <> insulation <---- factor(c(rep("without", 8), rep("with", 7))) factor(c(rep("without", 8), rep("with", 7))) factor(c(rep("without", 8), rep("with", 7))) factor(c(rep("without", 8), rep("with", 7)))

> # 8 without, then 7 with> # 8 without, then 7 with> # 8 without, then 7 with> # 8 without, then 7 with

> kWh <> kWh <> kWh <> kWh <---- c(10225, 10689, 14683, c(10225, 10689, 14683, c(10225, 10689, 14683, c(10225, 10689, 14683, 6584, 8541, 12086, 12467, 6584, 8541, 12086, 12467, 6584, 8541, 12086, 12467, 6584, 8541, 12086, 12467,

+ 12669, 9708, 6700, 4307, 10315, 8017, 8162, 8022)+ 12669, 9708, 6700, 4307, 10315, 8017, 8162, 8022)+ 12669, 9708, 6700, 4307, 10315, 8017, 8162, 8022)+ 12669, 9708, 6700, 4307, 10315, 8017, 8162, 8022)

> insulation.lm <> insulation.lm <> insulation.lm <> insulation.lm <---- lm(kWh ~ insulation) lm(kWh ~ insulation) lm(kWh ~ insulation) lm(kWh ~ insulation)

> summary(insulation.lm, corr=F)> summary(insulation.lm, corr=F)> summary(insulation.lm, corr=F)> summary(insulation.lm, corr=F)

Call:Call:Call:Call:

lm(formula = kWh ~ insulation)lm(formula = kWh ~ insulation)lm(formula = kWh ~ insulation)lm(formula = kWh ~ insulation)

Residuals:Residuals:Residuals:Residuals:

 Min 1Q Median 3Q Max Min 1Q Median 3Q Max Min 1Q Median 3Q Max Min 1Q Median 3Q Max

 ----4409 4409 4409 4409 ----979 1979 1979 1979 132 1575 3690 32 1575 3690 32 1575 3690 32 1575 3690

Coefficients:Coefficients:Coefficients:Coefficients:

 Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|)

(Intercept) 7890 874 9.03 5.8e(Intercept) 7890 874 9.03 5.8e(Intercept) 7890 874 9.03 5.8e(Intercept) 7890 874 9.03 5.8e----07070707

insulation 3103 1196 2.59 0.022insulation 3103 1196 2.59 0.022insulation 3103 1196 2.59 0.022insulation 3103 1196 2.59 0.022

Residual standard error: 2310 on 13 degrees of freedomResidual standard error: 2310 on 13 degrees of freedomResidual standard error: 2310 on 13 degrees of freedomResidual standard error: 2310 on 13 degrees of freedom

Multiple RMultiple RMultiple RMultiple R----Squared: Squared: Squared: Squared: 0.341, Adjusted R0.341, Adjusted R0.341, Adjusted R0.341, Adjusted R----squared: 0.29 squared: 0.29 squared: 0.29 squared: 0.29

FFFF----statistic: 6.73 on 1 and 13 degrees of freedom, pstatistic: 6.73 on 1 and 13 degrees of freedom, pstatistic: 6.73 on 1 and 13 degrees of freedom, pstatistic: 6.73 on 1 and 13 degrees of freedom, p----value: 0.0223 value: 0.0223 value: 0.0223 value: 0.0223

The p-value is 0.022, which may be taken to indicate (p < 0.05) that we can distinguish between the two types of
houses. But what does the “intercept” of 7890 mean, and what does the value for “insulation” of 3103 mean?
To interpret this, we need to know that the factor levels are, by default, taken in alphabetical order, and that the
initial level is taken as the baseline. So withwithwithwith comes before withoutwithoutwithoutwithout, and withwithwithwith is the baseline. Hence:

Average for Insulated Houses = 7980

To get the estimate for uninsulated houses take 7980 + 3103 = 10993.

The standard error of the difference is 1196.

5.6.1 The Model Matrix
It often helps to keep in mind the model matrix or X matrix. Here are the X and the y that are used for the
calculations. Note that the first eight data values were all withoutwithoutwithoutwithouts:

 Contrast kWh
× 7980 × 3103 Add to get Compare with Residual
 1 1 7980+3103=10993 10225 10225-10993

 1 1 7980+3103=10993 10689 10689-10993

.

 1 0 7980+0 9708 9708-7980

 1 0 7980+0 6700 6700-7980

.

Type in
model.matrix(kWh~insulatiomodel.matrix(kWh~insulatiomodel.matrix(kWh~insulatiomodel.matrix(kWh~insulation)n)n)n)

and check that it gives the above model matrix.

50

*5.6.2 Other Choices of Contrasts
There are other ways to set up the X matrix. In technical jargon, there are other choices of contrasts. One
obvious alternative is to make withoutwithoutwithoutwithout the first factor level, so that it becomes the baseline. For this, specify:

insulation <insulation <insulation <insulation <---- relevel(insulation, baseline="without") relevel(insulation, baseline="without") relevel(insulation, baseline="without") relevel(insulation, baseline="without")

 # Make `without’ the baseline # Make `without’ the baseline # Make `without’ the baseline # Make `without’ the baseline

Another possibility is to use what are called the “sum” contrasts. With the “sum” contrasts the baseline is the
mean over all factor levels. The effect for the first level is omitted; the user has to calculate it as minus the sum
of the remaining effects. Here is the output from use of the `sum’ contrasts30:

> options(contrasts = c("contr.sum", "contr.poly"), d> options(contrasts = c("contr.sum", "contr.poly"), d> options(contrasts = c("contr.sum", "contr.poly"), d> options(contrasts = c("contr.sum", "contr.poly"), digits = 2) igits = 2) igits = 2) igits = 2)

 # Try the `sum’ contrasts # Try the `sum’ contrasts # Try the `sum’ contrasts # Try the `sum’ contrasts

> insulation <> insulation <> insulation <> insulation <---- factor(insulation, levels=c("without", "with")) factor(insulation, levels=c("without", "with")) factor(insulation, levels=c("without", "with")) factor(insulation, levels=c("without", "with"))

 # Make `without' the baseline # Make `without' the baseline # Make `without' the baseline # Make `without' the baseline

> insulation.lm <> insulation.lm <> insulation.lm <> insulation.lm <---- lm(kWh ~ insulation) lm(kWh ~ insulation) lm(kWh ~ insulation) lm(kWh ~ insulation)

> summary(insulation.lm, corr=F)> summary(insulation.lm, corr=F)> summary(insulation.lm, corr=F)> summary(insulation.lm, corr=F)

Call:Call:Call:Call:

lm(formula = kWh ~ insulation)lm(formula = kWh ~ insulation)lm(formula = kWh ~ insulation)lm(formula = kWh ~ insulation)

RRRResiduals:esiduals:esiduals:esiduals:

 Min 1Q Median 3Q Max Min 1Q Median 3Q Max Min 1Q Median 3Q Max Min 1Q Median 3Q Max

 ----4409 4409 4409 4409 ----979 132 1575 3690 979 132 1575 3690 979 132 1575 3690 979 132 1575 3690

Coefficients:Coefficients:Coefficients:Coefficients:

 Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|)

(Intercept) 9442 598 15.78 7.4e(Intercept) 9442 598 15.78 7.4e(Intercept) 9442 598 15.78 7.4e(Intercept) 9442 598 15.78 7.4e----10101010

insulation 1551 598 2.59 0.022insulation 1551 598 2.59 0.022insulation 1551 598 2.59 0.022insulation 1551 598 2.59 0.022

Residual stResidual stResidual stResidual standard error: 2310 on 13 degrees of freedomandard error: 2310 on 13 degrees of freedomandard error: 2310 on 13 degrees of freedomandard error: 2310 on 13 degrees of freedom

Multiple RMultiple RMultiple RMultiple R----Squared: 0.341, Adjusted RSquared: 0.341, Adjusted RSquared: 0.341, Adjusted RSquared: 0.341, Adjusted R----squared: 0.29 squared: 0.29 squared: 0.29 squared: 0.29

FFFF----statistic: 6.73 on 1 and 13 degrees of freedom, pstatistic: 6.73 on 1 and 13 degrees of freedom, pstatistic: 6.73 on 1 and 13 degrees of freedom, pstatistic: 6.73 on 1 and 13 degrees of freedom, p----value: 0.0223value: 0.0223value: 0.0223value: 0.0223

Here is the interpretation:

average of (mean for “without”, “mean for with”) = 9442

 To get the estimate for uninsulated houses (the first level), take 9442 + 1551 = 10993

The `effects’ sum to one. So the effect for the second level (`with’) is -1551. Thus

 to get the estimate for insulated houses (the first level), take 9442 - 1551 = 7980.

The sum contrasts are sometimes called “analysis of variance” contrasts.

You can set the choice of contrasts for each factor separately, with a statement such as:
insulation <insulation <insulation <insulation <---- C(insulation, contr=treatment) C(insulation, contr=treatment) C(insulation, contr=treatment) C(insulation, contr=treatment)

Also available are the Helmert contrasts. These are not at all intuitive and rarely helpful, even though S-PLUS
uses them as the default. Novices should avoid them31.

30 The second string element, i.e. "contr.poly""contr.poly""contr.poly""contr.poly", is the default setting for factors with ordered levels. [One
uses the function ordered() to create ordered factors.]
31 The interpretation of the helmert contrasts is simple enough when there are just two levels. With >2 levels,
the helmert contrasts give parameter estimates which in general do not make a lot of sense, basically because the

51

5.7 Multiple Lines – Different Regression Lines for Different Species
The terms that appear on the right of the model formula may be variables or factors, or interactions between
variables and factors, or interactions between factors. Here we take advantage of this to fit different lines to
different subsets of the data.

In the example that follows, we had weights for a porpoise species (Stellena styx) and for a dolphin species
(Delphinus delphis). We take x1 to be a variable that has the value 0 for Delphinus delphis, and 1 for Stellena
styx. We take x2 to be body weight. Then possibilities we may want to consider are:

A: A single line: y = a + b x2

B: Two parallel lines: y = a1 + a2 x1 + b x2
[For the first group (Stellena styx; x1 = 0) the constant term is a1, while for the second group (Delphinus
delphis; x1 = 1) the constant term is a1 + a2.]

C: Two separate lines: y = a1 + a2 x1 + b1 x2 + b2 x1 x2
[For the first group (Delphinus delphis; x1 = 0) the constant term is a1 and the slope is b1. For the second group
(Stellena styx; x1 = 1) the constant term is a1 + a2, and the slope is b1 + b2.]

We show results from fitting the first two of these models, i.e. A and B:
> plot(logheart ~ logweight, data=dolphins) # Plot the data> plot(logheart ~ logweight, data=dolphins) # Plot the data> plot(logheart ~ logweight, data=dolphins) # Plot the data> plot(logheart ~ logweight, data=dolphins) # Plot the data

> options(digits=4)> options(digits=4)> options(digits=4)> options(digits=4)

> cet.lm1 <> cet.lm1 <> cet.lm1 <> cet.lm1 <---- lm(logheart ~ logweight, data = dolphins) lm(logheart ~ logweight, data = dolphins) lm(logheart ~ logweight, data = dolphins) lm(logheart ~ logweight, data = dolphins)

> summary(cet.lm1, corr=F)> summary(cet.lm1, corr=F)> summary(cet.lm1, corr=F)> summary(cet.lm1, corr=F)

Call:Call:Call:Call:

lm(formula = logheart ~ logweight, data = dolm(formula = logheart ~ logweight, data = dolm(formula = logheart ~ logweight, data = dolm(formula = logheart ~ logweight, data = dolphins)lphins)lphins)lphins)

Residuals:Residuals:Residuals:Residuals:

 Min 1Q Median 3Q Max Min 1Q Median 3Q Max Min 1Q Median 3Q Max Min 1Q Median 3Q Max

----0.15874 0.15874 0.15874 0.15874 ----0.08249 0.00274 0.04981 0.21858 0.08249 0.00274 0.04981 0.21858 0.08249 0.00274 0.04981 0.21858 0.08249 0.00274 0.04981 0.21858

Coefficients:Coefficients:Coefficients:Coefficients:

 Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.325 0.522 2.54 0.024(Intercept) 1.325 0.522 2.54 0.024(Intercept) 1.325 0.522 2.54 0.024(Intercept) 1.325 0.522 2.54 0.024

logweight 1.133 0.133logweight 1.133 0.133logweight 1.133 0.133logweight 1.133 0.133 8.52 6.5e 8.52 6.5e 8.52 6.5e 8.52 6.5e----07070707

Residual standard error: 0.111 on 14 degrees of freedomResidual standard error: 0.111 on 14 degrees of freedomResidual standard error: 0.111 on 14 degrees of freedomResidual standard error: 0.111 on 14 degrees of freedom

Multiple RMultiple RMultiple RMultiple R----Squared: 0.838, Adjusted RSquared: 0.838, Adjusted RSquared: 0.838, Adjusted RSquared: 0.838, Adjusted R----squared: 0.827 squared: 0.827 squared: 0.827 squared: 0.827

FFFF----statistic: 72.6 on 1 and 14 degrees of freedom, pstatistic: 72.6 on 1 and 14 degrees of freedom, pstatistic: 72.6 on 1 and 14 degrees of freedom, pstatistic: 72.6 on 1 and 14 degrees of freedom, p----value: 6.51evalue: 6.51evalue: 6.51evalue: 6.51e----007 007 007 007

For model B (parallel lines) we have
> cet.lm2 <> cet.lm2 <> cet.lm2 <> cet.lm2 <---- lm(logheart ~ factor(species) + logweight, data=dolphins) lm(logheart ~ factor(species) + logweight, data=dolphins) lm(logheart ~ factor(species) + logweight, data=dolphins) lm(logheart ~ factor(species) + logweight, data=dolphins)

Check what the model matrix looks like:

baseline keeps changing, to the average for all previous factor levels. You do better to use either the treatment
contrasts, or the sum contrasts. With the sum contrasts the baseline is the overall mean.

S-PLUS makes helmert contrasts the default, perhaps for reasons of computational efficiency. This was an
unfortunate choice.

52

> model.matrix(cet.lm2)> model.matrix(cet.lm2)> model.matrix(cet.lm2)> model.matrix(cet.lm2)

 (Intercept) factor(species) logweight (Intercept) factor(species) logweight (Intercept) factor(species) logweight (Intercept) factor(species) logweight

1 1 1 3.5551 1 1 3.5551 1 1 3.5551 1 1 3.555

2 1 1 3.7382 1 1 3.7382 1 1 3.7382 1 1 3.738

.

8 8 8 8 1 0 3.989 1 0 3.989 1 0 3.989 1 0 3.989

.

16 1 0 3.95116 1 0 3.95116 1 0 3.95116 1 0 3.951

attr(,"assign")attr(,"assign")attr(,"assign")attr(,"assign")

[1] 0 1 2[1] 0 1 2[1] 0 1 2[1] 0 1 2

attr(,"contrasts")attr(,"contrasts")attr(,"contrasts")attr(,"contrasts")

[1] "contr.treatment"[1] "contr.treatment"[1] "contr.treatment"[1] "contr.treatment"

Enter summary(cet.lm2)summary(cet.lm2)summary(cet.lm2)summary(cet.lm2) to get an output summary, and plot(cet.lm2)plot(cet.lm2)plot(cet.lm2)plot(cet.lm2) to plot diagnostic information
for this model.

For model C, the statement is:
> cet.lm3 <> cet.lm3 <> cet.lm3 <> cet.lm3 <---- lm(logheart ~ factor(species) + logweight + lm(logheart ~ factor(species) + logweight + lm(logheart ~ factor(species) + logweight + lm(logheart ~ factor(species) + logweight +

 factor(species):logweight, data=dolphins) factor(species):logweight, data=dolphins) factor(species):logweight, data=dolphins) factor(species):logweight, data=dolphins)

Check what the model matrix looks like:
> model.matrix(cet.lm3)> model.matrix(cet.lm3)> model.matrix(cet.lm3)> model.matrix(cet.lm3)

 (Intercept) factor(species) logweight fac (Intercept) factor(species) logweight fac (Intercept) factor(species) logweight fac (Intercept) factor(species) logweight factor(species).logweighttor(species).logweighttor(species).logweighttor(species).logweight

1 1 1 3.555 3.5551 1 1 3.555 3.5551 1 1 3.555 3.5551 1 1 3.555 3.555

.

8 1 0 3.989 0.0008 1 0 3.989 0.0008 1 0 3.989 0.0008 1 0 3.989 0.000

.

16 1 0 3.951 0.00016 1 0 3.951 0.00016 1 0 3.951 0.00016 1 0 3.951 0.000

attr(,"assign")attr(,"assign")attr(,"assign")attr(,"assign")

[1] 0 1 2 3[1] 0 1 2 3[1] 0 1 2 3[1] 0 1 2 3

attr(,"contrasts")$"factor(species)"attr(,"contrasts")$"factor(species)"attr(,"contrasts")$"factor(species)"attr(,"contrasts")$"factor(species)"

[1] "contr.treatment"[1] "contr.treatment"[1] "contr.treatment"[1] "contr.treatment"

Now see why one should not waste time on model C.
> anova(cet.lm1,cet.lm2,cet.lm3) > anova(cet.lm1,cet.lm2,cet.lm3) > anova(cet.lm1,cet.lm2,cet.lm3) > anova(cet.lm1,cet.lm2,cet.lm3)

Analysis of Variance TableAnalysis of Variance TableAnalysis of Variance TableAnalysis of Variance Table

Model 1: logheart ~ logweightModel 1: logheart ~ logweightModel 1: logheart ~ logweightModel 1: logheart ~ logweight

Model 2: logheart ~ factor(species) + logweModel 2: logheart ~ factor(species) + logweModel 2: logheart ~ factor(species) + logweModel 2: logheart ~ factor(species) + logweightightightight

Model 3: logheart ~ factor(species) + logweight + factor(species):logweightModel 3: logheart ~ factor(species) + logweight + factor(species):logweightModel 3: logheart ~ factor(species) + logweight + factor(species):logweightModel 3: logheart ~ factor(species) + logweight + factor(species):logweight

 Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F) Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F) Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F) Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 14 0.1717 1 14 0.1717 1 14 0.1717 1 14 0.1717

2 13 0.0959 1 0.0758 10.28 0.00692 13 0.0959 1 0.0758 10.28 0.00692 13 0.0959 1 0.0758 10.28 0.00692 13 0.0959 1 0.0758 10.28 0.0069

3 12 0.0949 1 0.0010 0.12 0.3 12 0.0949 1 0.0010 0.12 0.3 12 0.0949 1 0.0010 0.12 0.3 12 0.0949 1 0.0010 0.12 0.7346734673467346

5.8 aov models (Analysis of Variance)
The class of models that can be directly fitted as aovaovaovaov models is quite limited. In essence, aovaovaovaov provides, for data
where all combinations of factor levels have the same number of observations, another view of an lmlmlmlm model.
One can however specify the error term that is to be used in testing for treatment effects. See section 5.8.2
below.

By default, R uses the treatment contrasts for factors, i.e. the first level is taken as the baseline or reference level.
A useful function is relevel()relevel()relevel()relevel(). The parameter refrefrefref can be used to set the level that you want as the
reference level.

53

5.8.1 Plant Growth Example
Here is a simple randomised block design:

> data(PlantGrowth) # From the MASS library> data(PlantGrowth) # From the MASS library> data(PlantGrowth) # From the MASS library> data(PlantGrowth) # From the MASS library

> attach(PlantG> attach(PlantG> attach(PlantG> attach(PlantGrowth)rowth)rowth)rowth)

> boxplot(split(weight,group)) # Looks OK> boxplot(split(weight,group)) # Looks OK> boxplot(split(weight,group)) # Looks OK> boxplot(split(weight,group)) # Looks OK

> data()> data()> data()> data()

> PlantGrowth.aov <> PlantGrowth.aov <> PlantGrowth.aov <> PlantGrowth.aov <---- aov(weight~group) aov(weight~group) aov(weight~group) aov(weight~group)

> summary(PlantGrowth.aov)> summary(PlantGrowth.aov)> summary(PlantGrowth.aov)> summary(PlantGrowth.aov)

 Df Sum Sq Mean Sq F value Pr(>F) Df Sum Sq Mean Sq F value Pr(>F) Df Sum Sq Mean Sq F value Pr(>F) Df Sum Sq Mean Sq F value Pr(>F)

group 2 3.7663 1.8832 4.8461 0.01591group 2 3.7663 1.8832 4.8461 0.01591group 2 3.7663 1.8832 4.8461 0.01591group 2 3.7663 1.8832 4.8461 0.01591

Residuals 27 10.4921 0.3886 Residuals 27 10.4921 0.3886 Residuals 27 10.4921 0.3886 Residuals 27 10.4921 0.3886

> summary.lm(PlantGrowth.aov)> summary.lm(PlantGrowth.aov)> summary.lm(PlantGrowth.aov)> summary.lm(PlantGrowth.aov)

Call:Call:Call:Call:

aov(formula = weight ~ group)aov(formula = weight ~ group)aov(formula = weight ~ group)aov(formula = weight ~ group)

Residuals:Residuals:Residuals:Residuals:

 Min 1Q Median 3Q Max Min 1Q Median 3Q Max Min 1Q Median 3Q Max Min 1Q Median 3Q Max

----1.0710 1.0710 1.0710 1.0710 ----0.4180 0.4180 0.4180 0.4180 ----0.0060 0.2627 1.3690 0.0060 0.2627 1.3690 0.0060 0.2627 1.3690 0.0060 0.2627 1.3690

Coefficients:Coefficients:Coefficients:Coefficients:

 Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.032(Intercept) 5.032(Intercept) 5.032(Intercept) 5.0320 0.1971 25.527 <2e0 0.1971 25.527 <2e0 0.1971 25.527 <2e0 0.1971 25.527 <2e----16161616

grouptrt1 grouptrt1 grouptrt1 grouptrt1 ----0.3710 0.2788 0.3710 0.2788 0.3710 0.2788 0.3710 0.2788 ----1.331 0.19441.331 0.19441.331 0.19441.331 0.1944

grouptrt2 0.4940 0.2788 1.772 0.0877grouptrt2 0.4940 0.2788 1.772 0.0877grouptrt2 0.4940 0.2788 1.772 0.0877grouptrt2 0.4940 0.2788 1.772 0.0877

Residual standard error: 0.6234 on 27 degrees of freedomResidual standard error: 0.6234 on 27 degrees of freedomResidual standard error: 0.6234 on 27 degrees of freedomResidual standard error: 0.6234 on 27 degrees of freedom

Multiple RMultiple RMultiple RMultiple R----Squared: 0.2641, Adjusted RSquared: 0.2641, Adjusted RSquared: 0.2641, Adjusted RSquared: 0.2641, Adjusted R----squared: 0.2096 squared: 0.2096 squared: 0.2096 squared: 0.2096

FFFF----statististatististatististatistic: 4.846 on 2 and 27 degrees of freedom, pc: 4.846 on 2 and 27 degrees of freedom, pc: 4.846 on 2 and 27 degrees of freedom, pc: 4.846 on 2 and 27 degrees of freedom, p----value: 0.01591 value: 0.01591 value: 0.01591 value: 0.01591

> help(cabbages)> help(cabbages)> help(cabbages)> help(cabbages)

> data(cabbages) # From the MASS library> data(cabbages) # From the MASS library> data(cabbages) # From the MASS library> data(cabbages) # From the MASS library

> names(cabbages)> names(cabbages)> names(cabbages)> names(cabbages)

[1] "Cult" "Date" "HeadWt" "VitC" [1] "Cult" "Date" "HeadWt" "VitC" [1] "Cult" "Date" "HeadWt" "VitC" [1] "Cult" "Date" "HeadWt" "VitC"

> coplot(HeadWt~VitC|Cult+Date,data=cabbages)> coplot(HeadWt~VitC|Cult+Date,data=cabbages)> coplot(HeadWt~VitC|Cult+Date,data=cabbages)> coplot(HeadWt~VitC|Cult+Date,data=cabbages)

Examination of the plot suggests that cultivars differ greatly in the variability in head weight. Variation in the
vitamin C levels seems relatively consistent between cultivars.

> VitC.aov<> VitC.aov<> VitC.aov<> VitC.aov<----aov(VitC~Cult+Date,data=cabbages)aov(VitC~Cult+Date,data=cabbages)aov(VitC~Cult+Date,data=cabbages)aov(VitC~Cult+Date,data=cabbages)

> summary(VitC.aov)> summary(VitC.aov)> summary(VitC.aov)> summary(VitC.aov)

 Df Sum Sq Df Sum Sq Df Sum Sq Df Sum Sq Mean Sq F value Pr(>F) Mean Sq F value Pr(>F) Mean Sq F value Pr(>F) Mean Sq F value Pr(>F)

Cult 1 2496.15 2496.15 53.0411 1.179eCult 1 2496.15 2496.15 53.0411 1.179eCult 1 2496.15 2496.15 53.0411 1.179eCult 1 2496.15 2496.15 53.0411 1.179e----09090909

Date 2 909.30 454.65 9.6609 0.0002486Date 2 909.30 454.65 9.6609 0.0002486Date 2 909.30 454.65 9.6609 0.0002486Date 2 909.30 454.65 9.6609 0.0002486

Residuals 56 2635.40 47.06 Residuals 56 2635.40 47.06 Residuals 56 2635.40 47.06 Residuals 56 2635.40 47.06

54

*5.8.2 Shading of Kiwifruit Vines
These data (yields in kilograms) are in the data frame kiwishadekiwishadekiwishadekiwishade that accompanies these notes. They are from
an experiment32 where there were four treatments - no shading, shading from August to December, shading from
December to February, and shading from February to May. Each treatment appeared once in each of the three
blocks. The northernmost plots were grouped in one block because they were similarly affected by shading from
the sun. For the remaining two blocks shelter effects, in one case from the east and in the other case from the
west, were thought more important. Results are given for each of the four vines in each plot. In experimental
design parlance, the four vines within a plot constitute subplots.

The block:shadeblock:shadeblock:shadeblock:shade mean square (sum of squares divided by degrees of freedom) provides the error term. (If
this is not specified, one still gets a correct analysis of variance breakdown. But the F-statistics and p-values will
be wrong.)

> kiwishade$shade <> kiwishade$shade <> kiwishade$shade <> kiwishade$shade <---- relevel(kiwishade$shade, ref="none") relevel(kiwishade$shade, ref="none") relevel(kiwishade$shade, ref="none") relevel(kiwishade$shade, ref="none")

> ## Make sure that the level “none” (no shade) is u> ## Make sure that the level “none” (no shade) is u> ## Make sure that the level “none” (no shade) is u> ## Make sure that the level “none” (no shade) is used as referencesed as referencesed as referencesed as reference

> kiwishade.aov<> kiwishade.aov<> kiwishade.aov<> kiwishade.aov<----aov(yield~block+shade+Error(block:shade),data=kiwishade)aov(yield~block+shade+Error(block:shade),data=kiwishade)aov(yield~block+shade+Error(block:shade),data=kiwishade)aov(yield~block+shade+Error(block:shade),data=kiwishade)

> summary(kiwishade.aov)> summary(kiwishade.aov)> summary(kiwishade.aov)> summary(kiwishade.aov)

Error: block:shadeError: block:shadeError: block:shadeError: block:shade

 Df Sum Sq Mean Sq F value Pr(>F) Df Sum Sq Mean Sq F value Pr(>F) Df Sum Sq Mean Sq F value Pr(>F) Df Sum Sq Mean Sq F value Pr(>F)

block 2 172.35 86.17 4.1176 0.074879block 2 172.35 86.17 4.1176 0.074879block 2 172.35 86.17 4.1176 0.074879block 2 172.35 86.17 4.1176 0.074879

shade 3 1394.51 464.84shade 3 1394.51 464.84shade 3 1394.51 464.84shade 3 1394.51 464.84 22.2112 0.001194 22.2112 0.001194 22.2112 0.001194 22.2112 0.001194

Residuals 6 125.57 20.93 Residuals 6 125.57 20.93 Residuals 6 125.57 20.93 Residuals 6 125.57 20.93

Error: WithinError: WithinError: WithinError: Within

 Df Sum Sq Mean Sq F value Pr(>F) Df Sum Sq Mean Sq F value Pr(>F) Df Sum Sq Mean Sq F value Pr(>F) Df Sum Sq Mean Sq F value Pr(>F)

Residuals 36 438.58 12.18Residuals 36 438.58 12.18Residuals 36 438.58 12.18Residuals 36 438.58 12.18

> coef(kiwishade.aov)> coef(kiwishade.aov)> coef(kiwishade.aov)> coef(kiwishade.aov)

(Intercept) :(Intercept) :(Intercept) :(Intercept) :

(Intercept) (Intercept) (Intercept) (Intercept)

 96.5327 96.5327 96.5327 96.5327

block:shade :block:shade :block:shade :block:shade :

 blocknorth blockwest shad blocknorth blockwest shad blocknorth blockwest shad blocknorth blockwest shadeAug2Dec shadeDec2Feb shadeFeb2May eAug2Dec shadeDec2Feb shadeFeb2May eAug2Dec shadeDec2Feb shadeFeb2May eAug2Dec shadeDec2Feb shadeFeb2May

 0.993125 0.993125 0.993125 0.993125 ----3.430000 3.030833 3.430000 3.030833 3.430000 3.030833 3.430000 3.030833 ----10.281667 10.281667 10.281667 10.281667 ----7.428333 7.428333 7.428333 7.428333

Within :Within :Within :Within :

numeric(0)numeric(0)numeric(0)numeric(0)

5.9 Exercises
1. Here are two sets of data that were obtained the same apparatus, including the same rubber band, as the data
frame elasticband. For the data set elastic1elastic1elastic1elastic1, the values are:
 stretchstretchstretchstretch (mm): 46, 54, 48, 50, 44, 42, 52
 distancedistancedistancedistance (cm): 183, 217, 189, 208, 178, 150, 249.

For the data set elastic2elastic2elastic2elastic2, the values are:
 stretchstretchstretchstretch (mm): 25, 45, 35, 40, 55, 50 30, 50, 60
 distancedistancedistancedistance (cm): 71, 196, 127, 187, 249, 217, 114, 228, 291.

32 Data relate to the paper: Snelgar, W.P., Manson. P.J., Martin, P.J. 1992. Influence of time of shading on
flowering and yield of kiwifruit vines. Journal of Horticultural Science 67: 481-487.
Further details, including a diagram showing the layout of plots and vines and details of shelter, are in
Maindonald (1992). The two papers have different shorthands (e.g. Sept-Nov versus Aug-Dec) for describing
the time periods for which the shading was applied.

55

Using a different symbol and/or a different colour, plot the data from the two data frames elastic1elastic1elastic1elastic1 and
elastic2 elastic2 elastic2 elastic2 on the same graph. Do the two sets of results appear consistent.

2. For each of the data sets elastic1elastic1elastic1elastic1 and elastic2elastic2elastic2elastic2, determine the regression of stretch on distance. In
each case determine (i) fitted values and standard errors of fitted values and (ii) the R2 statistic. Compare the
two sets of results. What is the key difference between the two sets of data?

3. Use the method of section 5.7 to determine, formally, whether one needs different regression lines for the two
data frames elastic1elastic1elastic1elastic1 and elastic2elastic2elastic2elastic2.

4. Using the data frame carscarscarscars (in the base library), plot distancedistancedistancedistance (i.e. stopping distance) versus speedspeedspeedspeed. Fit
a line to this relationship, and plot the line. Then try fitting and plotting a quadratic curve. Does the quadratic
curve give a useful improvement to the fit? If you have studied the dynamics of particles, can you find a theory
that would tell you how stopping distance might change with speed?

5. Using the data frame hillshillshillshills (in library MASS), regress timetimetimetime on distancedistancedistancedistance and climbclimbclimbclimb. What can you
learn from the diagnostic plots that you get when you plot the lmlmlmlm object? Try also regressing log(time)log(time)log(time)log(time) on
log(distance)log(distance)log(distance)log(distance) and log(climb)log(climb)log(climb)log(climb). Which of these regression equations would you prefer?

6. Using the data frame beamsbeamsbeamsbeams (in the data sets accompanying these notes), carry out a regression of
strengthstrengthstrengthstrength on SpecificGravitySpecificGravitySpecificGravitySpecificGravity and MoistureMoistureMoistureMoisture. Carefully examine the regression diagnostic plot,
obtained by supplying the name of the lmlmlmlm object as the first parameter to plot()plot()plot()plot(). What does this indicate?

7. Type
hosp<hosp<hosp<hosp<----rep(c(”RNC”,”Hunter”,”Mater”),2)rep(c(”RNC”,”Hunter”,”Mater”),2)rep(c(”RNC”,”Hunter”,”Mater”),2)rep(c(”RNC”,”Hunter”,”Mater”),2)

hosphosphosphosp

fhosp<fhosp<fhosp<fhosp<----factfactfactfactor(hosp)or(hosp)or(hosp)or(hosp)

levels(fhosp)levels(fhosp)levels(fhosp)levels(fhosp)

Now repeat the steps involved in forming the factor fhospfhospfhospfhosp, this time keeping the factor levels in the order RNCRNCRNCRNC,
HunterHunterHunterHunter, MaterMaterMaterMater.

Use contrasts(fhosp)contrasts(fhosp)contrasts(fhosp)contrasts(fhosp) to form and print out the matrix of contrasts. Do this using helmert contrasts,
treatment contrasts, and sum contrasts. Using an outcome variable

y <y <y <y <---- c(2,5,8,10,3,9) c(2,5,8,10,3,9) c(2,5,8,10,3,9) c(2,5,8,10,3,9)

fit the model lm(y~fhosp)lm(y~fhosp)lm(y~fhosp)lm(y~fhosp), repeating the fit for each of the three different choices of contrasts. Comment on
what you get.

For which choice(s) of contrasts do the parameter estimates change when you re-order the factor levels?

8. In section 5.7 check the form of the model matrix (i) for fitting two parallel lines and (ii) for fitting two
arbitrary lines when one uses the sum contrasts. Repeat the exercise for the helmert contrasts.

9. In the data set cementcementcementcement (MASS library), examine the dependence of y (amount of heat produced) on x1, x2, x3
and x4 (which are proportions of four constituents). Begin by examining the scatterplot matrix. As the
explanatory variables are proportions, do they require transformation, perhaps by taking log(x/(100-x))? What
alternative strategies one might use to find an effective prediction equation?

10. In the data set pressurepressurepressurepressure (base library), examine the dependence of pressure on temperature.
[Transformation of temperature makes sense only if one first converts to degrees Kelvin. Consider
transformation of pressure. A logarithmic transformation is too extreme; the direction of the curvature changes.
What family of transformations might one try?

11. Modify the code in section 5.5.3 to fit: (a) a line, with accompanying 95% confidence bounds, and (b) a
cubic curve, with accompanying 95% pointwise confidence bounds. Which of the three possibilities (line,
quadratic, curve) is most plausible? Can any of them be trusted?

*12. Repeat the analysis of the kiwishadekiwishadekiwishadekiwishade data (section 5.8.2), but replacing Error(block:shade)Error(block:shade)Error(block:shade)Error(block:shade) with
block:shadeblock:shadeblock:shadeblock:shade. Comment on the output that you get from summary()summary()summary()summary(). To what extent is it potentially
misleading? Also do the analysis where the block:shadeblock:shadeblock:shadeblock:shade term is omitted altogether. Comment on that
analysis.

5.10 References
Atkinson, A. C. 1986. Comment: Aspects of diagnostic regression analysis. Statistical Science 1, 397–402.

56

Atkinson, A. C. 1988. Transformations Unmasked. Technometrics 30: 311-318.

Cook, R. D. and Weisberg, S. 1999. Applied Regression including Computing and Graphics. Wiley.

Dehejia, R.H. and Wahba, S. 1999. Causal effects in non-experimental studies: re-evaluating the evaluation of
training programs. Journal of the American Statistical Association 94: 1053-1062.

Harrell, F. E., Lee, K. L., and Mark, D. B. 1996. Tutorial in Biostatistics. Multivariable Prognostic Models:
Issues in Developing Models, Evaluating Assumptions and Adequacy, and Measuring and Reducing Errors.
Statistics in Medicine 15: 361-387.

Lalonde, R. 1986. Evaluating the economic evaluations of training programs. American Economic Review 76:
604-620.

Maindonald J H 1992. Statistical design, analysis and presentation issues. New Zealand Journal of Agricultural
Research 35: 121-141.
Venables, W. N. and Ripley, B. D., 2nd edn 1997. Modern Applied Statistics with S-Plus. Springer, New York.

Weisberg, S., 2nd edn, 1985. Applied Linear Regression. Wiley.

Williams, G. P. 1983. Improper use of regression equations in the earth sciences. Geology 11: 195-197

57

6. Multivariate and Tree-Based Methods

6.1 Multivariate EDA, and Principal Components Analysis
Principal components analysis is often a useful exploratory tool for multivariate data. The idea is to replace the
initial set of variables by a small number of “principal components” that together may explain most of the
variation in the data. The first principal component is the component (linear combination of the initial variables)
that explains the greatest part of the variation. The second principal component is the component that, among
linear combinations of the variables that are uncorrelated with the first principal component, explains the
greatest part of the remaining variation, and so on.

The measure of variation used is the sum of the variances of variables, perhaps after scaling the variables so that
they each have variance one. An analysis that works with the unscaled variables, and hence with the variance-
covariance matrix, gives a greater weight to variables that have a large variance. The common alternative –
scaling variables so that they each have variance equal to one – is equivalent to working with the correlation
matrix.

With biological measurement data, it is usually desirable to begin by taking logarithms. The standard deviations
then measure the logarithm of relative change. Because all variables measure much the same quantity (i.e.
relative variability), and because the standard deviations are typically fairly comparable, scaling to give equal
variances is unnecessary.

The data set possumpossumpossumpossum that accompanies these notes has nine morphometric measurements on each of 102
mountain brushtail possums, trapped at seven sites from southern Victoria to central Queensland33. It is good
practice to begin by examining relevant scatterplot matrices. This may draw attention to gross errors in the data.
A plot in which the sites and/or the sexes are identified will draw attention to any very strong structure in the
data. For example one site may be quite different from the others, for some or all of the variables.

Taking logarithms of these data does not make much difference to the appearance that they present when plotted.
This is because the ratio of largest to smallest value is relatively small, never more than 1.6, for all variables.

Here are some of the scatterplot matrix possibilities:
pairs(possum[,6:14], col=palette()[as.integer(possum$sex)])pairs(possum[,6:14], col=palette()[as.integer(possum$sex)])pairs(possum[,6:14], col=palette()[as.integer(possum$sex)])pairs(possum[,6:14], col=palette()[as.integer(possum$sex)])

pairs(possum[,6pairs(possum[,6pairs(possum[,6pairs(possum[,6:14], col=palette()[as.integer(possum$site)]):14], col=palette()[as.integer(possum$site)]):14], col=palette()[as.integer(possum$site)]):14], col=palette()[as.integer(possum$site)])

here<here<here<here<----!is.na(possum$footlgth) # We need to exclude missing values!is.na(possum$footlgth) # We need to exclude missing values!is.na(possum$footlgth) # We need to exclude missing values!is.na(possum$footlgth) # We need to exclude missing values

print(sum(!here)) # Check how many values are missingprint(sum(!here)) # Check how many values are missingprint(sum(!here)) # Check how many values are missingprint(sum(!here)) # Check how many values are missing

We now look at particular views of the data that we get from a principal components analysis:
library(mva) # Load xlibrary(mva) # Load xlibrary(mva) # Load xlibrary(mva) # Load x----variate analysis libraryvariate analysis libraryvariate analysis libraryvariate analysis library

possum.prc <possum.prc <possum.prc <possum.prc <---- princomp(log(possum[here,6:14])) # Principal components princomp(log(possum[here,6:14])) # Principal components princomp(log(possum[here,6:14])) # Principal components princomp(log(possum[here,6:14])) # Principal components

Print scores on second pc versus scores on first pc,# Print scores on second pc versus scores on first pc,# Print scores on second pc versus scores on first pc,# Print scores on second pc versus scores on first pc,

by populations and sex, identified by site# by populations and sex, identified by site# by populations and sex, identified by site# by populations and sex, identified by site

coplotcoplotcoplotcoplot(possum.prc$scores[,2] ~(possum.prc$scores[,2] ~(possum.prc$scores[,2] ~(possum.prc$scores[,2] ~

 possum.prc$scores[,1]|possum$Pop[here]+possum$sex[here], possum.prc$scores[,1]|possum$Pop[here]+possum$sex[here], possum.prc$scores[,1]|possum$Pop[here]+possum$sex[here], possum.prc$scores[,1]|possum$Pop[here]+possum$sex[here],

 col=palette()[as.integer(possum$site)]) col=palette()[as.integer(possum$site)]) col=palette()[as.integer(possum$site)]) col=palette()[as.integer(possum$site)])

Fig. 22, which uses different plot symbols for different sites, used the code:
coplot(possum.prc$scores[,2] ~coplot(possum.prc$scores[,2] ~coplot(possum.prc$scores[,2] ~coplot(possum.prc$scores[,2] ~

 possum.prc$scores[possum.prc$scores[possum.prc$scores[possum.prc$scores[,1]|possum$Pop[here]+possum$sex[here],,1]|possum$Pop[here]+possum$sex[here],,1]|possum$Pop[here]+possum$sex[here],,1]|possum$Pop[here]+possum$sex[here],

 pch=as.integer(possum$site)) pch=as.integer(possum$site)) pch=as.integer(possum$site)) pch=as.integer(possum$site))

33 Data relate to the paper: Lindenmayer, D. B., Viggers, K. L., Cunningham, R. B., and Donnelly, C. F. 1995.
Morphological variation among columns of the mountain brushtail possum, Trichosurus caninus Ogilby
(Phalangeridae: Marsupiala). Australian Journal of Zoology 43: 449-458.

58

-0
.2

0.
0

0.
1

-0 .3 -0 .1 0 .1 0 .3

-0 .3 -0 .1 0 .1 0 .3

-0
.2

0.
0

0.
1

possum.prc$scores[, 1]

po
ss

um
.p

rc
$s

co
re

s[
, 2

]

Vic

o t h er

0 .5 1 .0 1 .5 2 .0 2 .5

Given : possum$Pop[here]

f

m

0.
5

1.
0

1.
5

2.
0

2.
5

G
iv

en
 :

po
ss

um
$s

ex
[h

er
e]

Fig. 22: Second principal component versus first principal component,
by population and by sex, for the possum data.

6.2 Cluster Analysis
In the language of Ripley (1996)34, cluster analysis is a form of unsupervised classification. It is “unsupervised”
because the clusters are not known in advance. There are two types of algorithms – algorithms based on
hierachical agglomeration, and algorithms based on iterative relocation.

In hierarchical agglomeration each observation starts as a separate group. Groups that are “close” to one
another are then successively merged. The output yields a hierarchical clustering tree that shows the
relationships between observations and between the clusters into which they are successively merged. A
judgement is then needed on the point at which further merging is unwarranted.

In iterative relocation, the algorithm starts with an initial classification, that it then tries to improve. How does
one get the initial classification? Typically, by a prior use of a hierarchical agglomeration algorithm.

The mva library has the cluster analysis routines. The function dist() calculates distances. The function hclust()
does hierarchical agglomerative clustering, with a choice of methods available. The function kmeans() (k-means
clustering) implements iterative relocation.

6.3 Discriminant Analysis
We start with data that are classified into several groups, and want a rule that will allow us to predict the group
to which a new data value will belong. In the language of Ripley (1996), our interest is in supervised
classification. For example, we may wish to predict, based on prognostic measurements and outcome

34 References are at the end of the chapter.

59

information for previous patients, which future patients will remain free of disease symptoms for twelve months
or more.

Here are calculations for the possumpossumpossumpossum data frame, using the lda()lda()lda()lda() function from the Venables & Ripley MASS
library. Our interest is in whether it is possible, on the basis of morphometric measurements, to distinguish
animals from different sites. A cruder distinction is between populations, i.e. sites in Victoria (an Australian
state) as opposed to sites in other states (New South Wales or Queensland). Because it has little on the
distribution of variable values, I have not thought it necessary to take logarithms. I discuss this further below.

> library(mass) # Only if not already attached.> library(mass) # Only if not already attached.> library(mass) # Only if not already attached.> library(mass) # Only if not already attached.

> here<> here<> here<> here<---- !is.na(possum$footlgt !is.na(possum$footlgt !is.na(possum$footlgt !is.na(possum$footlgth)h)h)h)

> possum.lda <> possum.lda <> possum.lda <> possum.lda <---- lda(site ~ hdlngth+skullw+totlngth+ lda(site ~ hdlngth+skullw+totlngth+ lda(site ~ hdlngth+skullw+totlngth+ lda(site ~ hdlngth+skullw+totlngth+

+ taillgth+footlgth+earconch+eye+chest+belly,data=possum,+ taillgth+footlgth+earconch+eye+chest+belly,data=possum,+ taillgth+footlgth+earconch+eye+chest+belly,data=possum,+ taillgth+footlgth+earconch+eye+chest+belly,data=possum,

+ subset=here)+ subset=here)+ subset=here)+ subset=here)

> options(digits=4)> options(digits=4)> options(digits=4)> options(digits=4)

> possum.lda$svd # Examine the singular values> possum.lda$svd # Examine the singular values> possum.lda$svd # Examine the singular values> possum.lda$svd # Examine the singular values

[1] 15.7578 3.9372 3.1860 1.5078 1.1420 0.7772[1] 15.7578 3.9372 3.1860 1.5078 1.1420 0.7772[1] 15.7578 3.9372 3.1860 1.5078 1.1420 0.7772[1] 15.7578 3.9372 3.1860 1.5078 1.1420 0.7772

>>>>

> plo> plo> plo> plot(possum.lda, dimen=3) t(possum.lda, dimen=3) t(possum.lda, dimen=3) t(possum.lda, dimen=3)

> # Scatterplot matrix for scores on 1> # Scatterplot matrix for scores on 1> # Scatterplot matrix for scores on 1> # Scatterplot matrix for scores on 1stststst 3 canonical variates, as in Fig.23 3 canonical variates, as in Fig.23 3 canonical variates, as in Fig.23 3 canonical variates, as in Fig.23

LD1

1

1 111

1

1
11

11 1

1

1

1
1 1

11

1

1

1

1
1

1

1

1

11

1 1
1

1

2
2 22

2

2
2

2

22

2

2

3 333

3 3

3
4

44

4
4 4

4

5
5

5

5
555

5
55

5
5

5

6
6

6
6

6
6 6

6666 6
6

7
7
77 7

7

7

7 7
7

7 7

7

77
77 7

-4 -2 0 2

1

1111

1

1
1 111 1

1

1

1
11

1 1

1

1

1

1
1

1

1

1

11

1 1
1
1

2
22

2

2

2
2

2

22

2

2

333 3

33

3
4
4 4

4
44

4

5
5

5

5
5 55

5
55

5
5

5

6
6
6

6

6
66

666 66
6

7
7

7 77
7

7

7 7
7

77

7

77
7 77

-8
-6

-4
-2

0
2

4

1

1

1

1

1

1 11 1
11

1
11

11

1
1 1

1

1

1
1

1

1

1

1

1
1

1

11

1
22
2

2 2

2

2

2

2

2

2 2

3
3
33 3

3

3 4

44

44

4

4 5

5
5

5
5

55
55

5

5

55
6

6 6

6

6 6

6

6

666

6

6

7

77

7

7

7

7

7

7

7
7

7 7

77

7

7

7

-4
-2

0
2

LD2
1

1

1

1

1

111 1
11

1
11

11

1
1 1

1

1

1
1

1

1

1

1

1
1

1

11

1
2 2

2

22

2

2

2

2

2

2 2

3
3

3 3 3

3

34

4 4

44

4

45

5
5

5
5

55
55

5

5

5 5
6

66

6

6 6

6

6

66 6

6

6

7

77

7

7

7

7

7

7

7
7

7 7

77

7

7

7

1

1

11
1

1

11

1

11

1

11

1

1

1

1
1

11
1

1
1 1

1 1
1
1

1

1

1 1

2

22

2 2

2
2

2

2

22

2

3

3
3

3
3

3

3

44

4 4

44

4

5

5

5

5

5

5

5

5

5
5

5

5

5

6
6 6 6

6

6
6

66

6

6
6 6

7

7

7

7

7

7

7

7
7

7

7

7

777
7
7

7

-8 -6 -4 -2 0 2 4

1

1

11
1

1

11

1

11

1

11

1

1

1

1
1

1 1
1

1
1 1

11
1

1

1

1

11

2

2 2

22

2
2

2

2

2 2

2

3

3
3

3
3

3

3

4 4

44

4 4

4

5

5

5

5

5

5

5

5

5
5

5

5

5

6
666

6

6
6

66

6

6
66

7

7

7

7

7

7

7

7
7

7

7

7

777
7

7

7

LD3

-3
-2

-1
0

1
2

3

-3 -2 -1 0 1 2 3
Figure 23: Scatterplot matrix of first three canonical variates.

The singular values are the ratio of between to within group sums of squares, for the canonical variates in turn.
Clearly canonical variates after the third will have little if any discriminatory power. One can use
predict.lda()predict.lda()predict.lda()predict.lda() to get (among other information) scores on the first few canonical variates.

Note that there may be interpretative advantages in taking logarithms of biological measurement data. The
standard against which patterns of measurement are commonly compared is that of allometric growth, which
implies a linear relationship between the logarithms of the measurements. Differences between different sites

60

are then indicative of different patterns of allometric growth. The reader may wish to repeat the above analysis,
but working with the logarithms of measurements.

Where there are two groups, logistic regression is often effective. A source of code for handling more general
supervised classification problems is Hastie and Tibshirani’s mdamdamdamda (mixture discriminant analysis) library. There
is a brief overview of this library in the Venables and Ripley `Complements’, referred to in section 13.2 .

6.4 Decision Tree models (Tree-based models)
We include tree-based classification here because it is a multivariate supervised classification, or discrimination,
method. A tree-based regression approach is available for use for regression problems. Tree-based methods
seem more suited to binary regression and classification than to regression with an ordinal or continuous
dependent variable.

Tree-based models, also known as “Classification and Regression Trees” (CART), may be suitable for
regression and classification problems when there are extensive data. One advantage of such methods is that
they automatically handle non-linearity and interactions. Output includes a “decision tree” that is immediately
useful for prediction.

library(rpart)library(rpart)library(rpart)library(rpart)

data(fgl) data(fgl) data(fgl) data(fgl) # Forensic glass fragment data; from MASS library# Forensic glass fragment data; from MASS library# Forensic glass fragment data; from MASS library# Forensic glass fragment data; from MASS library

glass.tree <glass.tree <glass.tree <glass.tree <---- rpart(type ~ RI+Na+Mg+Al+Si+K+Ca+Ba+Fe, data=fgl) rpart(type ~ RI+Na+Mg+Al+Si+K+Ca+Ba+Fe, data=fgl) rpart(type ~ RI+Na+Mg+Al+Si+K+Ca+Ba+Fe, data=fgl) rpart(type ~ RI+Na+Mg+Al+Si+K+Ca+Ba+Fe, data=fgl)

plot(glass.tree); text(glass.tree)plot(glass.tree); text(glass.tree)plot(glass.tree); text(glass.tree)plot(glass.tree); text(glass.tree)

summary(glass.tree)summary(glass.tree)summary(glass.tree)summary(glass.tree)

To use these models effectively, you also need to know about approaches to pruning trees, and about cross-
validation. Methods for reduction of tree complexity that are based on significance tests at each individual node
(i.e. branching point) typically choose trees that over-predict.

The Atkinson and Therneau rpart (recursive partitioning) library is closer to CART than is the S-PLUS tree
library. It integrates cross-validation with the algorithm for forming trees.

6.5 Exercises
1. Using the data set painterspainterspainterspainters (MASS library), apply principal components analysis to the scores for
CompositionCompositionCompositionComposition, DrawingDrawingDrawingDrawing, ColourColourColourColour, and ExpressionExpressionExpressionExpression. Examine the loadings on the first three principal
components. Plot a scatterplot matrix of the first three principal components, using different colours or symbols
to identify the different schools.

2. The data set Cars93Cars93Cars93Cars93 is in the MASS library. Using the columns of continuous or ordinal data, determine
scores on the first and second principal components. Investigate the comparison between (i) USA and non-USA
cars, and (ii) the six different types (TypeTypeTypeType) of car. Now create a new data set in which binary factors become
columns of 0/1 data, and include these in the principal components analysis.

3. Repeat the calculations of exercises 1 and 2, but this time using the function lda()lda()lda()lda() from the MASS library to
derive canonical discriminant scores, as in section 6.3.

4. The MASS library has the Aids2Aids2Aids2Aids2 data set, containing de-identified data on the survival status of patients
diagnosed with AIDS before July 1 1991. Use tree-based classification (rpart())rpart())rpart())rpart()) to identify major
influences on survival.

5. Investigate discrimination between plagiotropic and orthotropic species in the data set leafshapeleafshapeleafshapeleafshape
35.

6.6 References
Chambers, J. M. and Hastie, T. J. 1992. Statistical Models in S. Wadsworth and Brooks Cole Advanced Books
and Software, Pacific Grove CA.

35 Data relate to the paper: King. D.A. and Maindonald, J.H. 1999. Tree architecture in relation to leaf
dimensions and tree stature in temperate and tropical rain forests. Journal of Ecology 87: 1012-1024.

61

Everitt, B. S. and Dunn, G. 1992. Applied Multivariate Data Analysis. Arnold, London.

Friedman, J., Hastie, T. and Tibshirani, R. (1998). Additive logistic regression: A statistical view of boosting.
Available from the internet.

Ripley, B. D. 1996. Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge UK.

Therneau, T. M. and Atkinson, E. J. 1997. An Introduction to Recursive Partitioning Using the RPART
Routines. This is one of two documents included in:
http://www.stats.ox.ac.uk/pub/SWin/rpartdoc.zip

Venables, W. N. and Ripley, B. D., 2nd edn 1997. Modern Applied Statistics with S-Plus. Springer, New York.

62

63

*7. R Data Structures

7.1 Vectors
Recall that vectors may have mode logical, numeric or character36.

7.1.1 Subsets of Vectors
Recall (section 2.6.2) two common ways to extract subsets of vectors:

1. Specify the numbers of the elements that are to be extracted. One can use negative numbers to omit
elements.

2. Specify a vector of logical values. The elements that are extracted are those for which the logical value
is TTTT. Thus suppose we want to extract values of xxxx that are greater than 10.

The following demonstrates a third possibility, for vectors that have named elements:
> c(Andreas=178, John=185, Jeff=183)[c("John","Jeff")]> c(Andreas=178, John=185, Jeff=183)[c("John","Jeff")]> c(Andreas=178, John=185, Jeff=183)[c("John","Jeff")]> c(Andreas=178, John=185, Jeff=183)[c("John","Jeff")]

 John Jeff John Jeff John Jeff John Jeff

 185 183 185 183 185 183 185 183

A vector of names has been used to extract the elements.

7.1.2 Patterned Data
Use 5:15 to generate the numbers 5, 6, …, 15. Entering 15:5 will generate the sequence in the reverse order.

To repeat the sequence (2, 3, 5) four times over, enter rep(c(2,3,5), 4)rep(c(2,3,5), 4)rep(c(2,3,5), 4)rep(c(2,3,5), 4) thus:
> rep(c(2,3,5),4)> rep(c(2,3,5),4)> rep(c(2,3,5),4)> rep(c(2,3,5),4)

 [1] 2 3 5 2 3 5 2 3 5 2 3 5 [1] 2 3 5 2 3 5 2 3 5 2 3 5 [1] 2 3 5 2 3 5 2 3 5 2 3 5 [1] 2 3 5 2 3 5 2 3 5 2 3 5

>>>>

If instead one wants four 2s, then four 3s, then four 5s, enter rep(c(2,3,5), c(4,4,4))rep(c(2,3,5), c(4,4,4))rep(c(2,3,5), c(4,4,4))rep(c(2,3,5), c(4,4,4)).
> rep(c(2,3,5),c(4,4,4)) # An alternative is rep(c(2,3,5), each=4)> rep(c(2,3,5),c(4,4,4)) # An alternative is rep(c(2,3,5), each=4)> rep(c(2,3,5),c(4,4,4)) # An alternative is rep(c(2,3,5), each=4)> rep(c(2,3,5),c(4,4,4)) # An alternative is rep(c(2,3,5), each=4)

 [1] 2 2 2 2 3 3 3 3 5 5 5 5 [1] 2 2 2 2 3 3 3 3 5 5 5 5 [1] 2 2 2 2 3 3 3 3 5 5 5 5 [1] 2 2 2 2 3 3 3 3 5 5 5 5

Note further that, in place of c(4,4,4)c(4,4,4)c(4,4,4)c(4,4,4) we could write rep(4,3)rep(4,3)rep(4,3)rep(4,3). So a further possibility is that in place of
rep(c(2,3,5), c(4,4,4))rep(c(2,3,5), c(4,4,4))rep(c(2,3,5), c(4,4,4))rep(c(2,3,5), c(4,4,4)) we could enter rep(c(2,3,5), rep(4,3)).rep(c(2,3,5), rep(4,3)).rep(c(2,3,5), rep(4,3)).rep(c(2,3,5), rep(4,3)).

In addition to the above, note that the function rep()rep()rep()rep() has an argument length.outlength.outlength.outlength.out, meaning “keep on
repeating the sequence until the length is lelelelength.outngth.outngth.outngth.out.”

7.2 Missing Values
In R, the missing value symbol is NANANANA. Any arithmetic operation or relation that involves NANANANA generates an NANANANA.
This applies also to the relations <<<<, <=<=<=<=, >>>>, >=, ========, !=!=!=!=. The first four compare magnitudes, ======== tests for equality,
and !=!=!=!= tests for inequality. Unless you think carefully about the implications for working with expressions that
include NANANANAs, you may not get the results that you expect. Specifically, note that x==NAx==NAx==NAx==NA generates NANANANA.

Be sure to use is.na(x)is.na(x)is.na(x)is.na(x) to test which values of xxxx are NANANANA. As x==NA x==NA x==NA x==NA gives a vector of NANANANAs, you get no
information at all about xxxx. For example

> x <> x <> x <> x <---- c(1,6,2,NA) c(1,6,2,NA) c(1,6,2,NA) c(1,6,2,NA)

36 Below, we will meet the notion of “class”, which is important for some of the more sophisticated language
features of R. The logical, numeric and character vectors just given have class NULL, i.e. they have no class.
There are special types of numeric vector which do have a class attribute. Factors are the most important
example. Although often used as a compact way to store character strings, factors are, technically, numeric
vectors. The class attribute of a factor has, not surprisingly, the value “factor”.

64

> is.na(x) # TRUE for when NA appears, and otherwise FALSE> is.na(x) # TRUE for when NA appears, and otherwise FALSE> is.na(x) # TRUE for when NA appears, and otherwise FALSE> is.na(x) # TRUE for when NA appears, and otherwise FALSE

[1] FALSE FALSE FALSE TRUE[1] FALSE FALSE FALSE TRUE[1] FALSE FALSE FALSE TRUE[1] FALSE FALSE FALSE TRUE

> x==NA # All elements are set to NA> x==NA # All elements are set to NA> x==NA # All elements are set to NA> x==NA # All elements are set to NA

[[[[1] NA NA NA NA1] NA NA NA NA1] NA NA NA NA1] NA NA NA NA

> NA==NA> NA==NA> NA==NA> NA==NA

[1] NA[1] NA[1] NA[1] NA

WARNING: This is chiefly for those who may move between R and S-PLUS. In important respects, R’s
behaviour with missing values is more intuitive than that of S-PLUS. Thus in R

 y[x>2] <y[x>2] <y[x>2] <y[x>2] <---- x[x>2] x[x>2] x[x>2] x[x>2]

gives the result that the naïve user might expect, i.e. replace elements of yyyy with corresponding elements of xxxx
wherever x>2x>2x>2x>2. Wherever x>2x>2x>2x>2 gives the result NANANANA, no action is taken. In R, any NANANANA in x>2x>2x>2x>2 yields a value of NANANANA
for y[x>2]y[x>2]y[x>2]y[x>2] on the left of the equation, and a value of NANANANA for x[x>2]x[x>2]x[x>2]x[x>2] on the right of the equation.

In S-PLUS, the result on the right is the same, i.e. an NANANANA. However, on the left, elements that have a subscript
NANANANA drop out. The vector on the left to which values will be assigned has, as a result, fewer elements than the
vector on the right.

Thus the following has the effect in R that the naïve user might expect, but not in S-PLUS:
x <x <x <x <---- c(1,6,2,NA,10) c(1,6,2,NA,10) c(1,6,2,NA,10) c(1,6,2,NA,10)

y <y <y <y <---- c(1,4,2,3,0) c(1,4,2,3,0) c(1,4,2,3,0) c(1,4,2,3,0)

y[x>2] <y[x>2] <y[x>2] <y[x>2] <---- x[x>2] x[x>2] x[x>2] x[x>2]

yyyy

In S-PLUS it is essential to specify, in the example just considered:
y[!is.ny[!is.ny[!is.ny[!is.na(x)&x>2] <a(x)&x>2] <a(x)&x>2] <a(x)&x>2] <---- x[!is.na(x)&x>2] x[!is.na(x)&x>2] x[!is.na(x)&x>2] x[!is.na(x)&x>2]

Here is a further example of R’s behaviour:
> x <> x <> x <> x <---- c(1,6,2,NA,10) c(1,6,2,NA,10) c(1,6,2,NA,10) c(1,6,2,NA,10)

> x>2> x>2> x>2> x>2

[1] FALSE TRUE FALSE NA TRUE[1] FALSE TRUE FALSE NA TRUE[1] FALSE TRUE FALSE NA TRUE[1] FALSE TRUE FALSE NA TRUE

> x[x>3] <> x[x>3] <> x[x>3] <> x[x>3] <---- c(21,22) c(21,22) c(21,22) c(21,22) # This does not give what the naïve user might expect# This does not give what the naïve user might expect# This does not give what the naïve user might expect# This does not give what the naïve user might expect

Warning message: Warning message: Warning message: Warning message:

number of items to replacenumber of items to replacenumber of items to replacenumber of items to replace is not a multiple of replacement length is not a multiple of replacement length is not a multiple of replacement length is not a multiple of replacement length

> x> x> x> x

[1] 1 21 2 NA 21[1] 1 21 2 NA 21[1] 1 21 2 NA 21[1] 1 21 2 NA 21

The safe way, in both S-PLUS and R, is to use !is.na(x)!is.na(x)!is.na(x)!is.na(x) to limit the selection, on one or both sides as
necessary, to those elements of xxxx that are not NANANANAs. We will have more to say on missing values in the section on
data frames that now follows.

7.3 Data frames
The concept of a data frame is fundamental to the use of most of the R modelling and graphics functions. A data
frame is a generalisation of a matrix, in which different columns may have different modes. All elements of any
column must however have the same mode, i.e. all numeric or all factor, or all character.

Data frames where all columns hold numeric data have some, but not all, of the properties of matrices. There
are important differences that arise because data frames are implemented as lists. To turn a data frame of
numeric data into a matrix of numeric data, use as.matrix()as.matrix()as.matrix()as.matrix().

Lists are discussed below, in section 7.6.

65

7.3.1 Extraction of Component Parts of Data frames

Consider the data frame BarleyBarleyBarleyBarley. A version is available with the data sets that are supplied to complement
these notes. The data set immerimmerimmerimmer that is bundled with the Venables and Ripley MASS library has the same data,
but arranged differently.

> names(Barley)> names(Barley)> names(Barley)> names(Barley)

[[[[1] "Site" "Variety" "Year" "Yield” 1] "Site" "Variety" "Year" "Yield” 1] "Site" "Variety" "Year" "Yield” 1] "Site" "Variety" "Year" "Yield”

> levels(Barley$Site)> levels(Barley$Site)> levels(Barley$Site)> levels(Barley$Site)

[1] "C" "D" "GR" "M" "UF" "W"[1] "C" "D" "GR" "M" "UF" "W"[1] "C" "D" "GR" "M" "UF" "W"[1] "C" "D" "GR" "M" "UF" "W"

> levels(Barley$Variety)> levels(Barley$Variety)> levels(Barley$Variety)> levels(Barley$Variety)

[1] "Manchuria" "Peatland" "Svansota" "Trebi" "Velvet" [1] "Manchuria" "Peatland" "Svansota" "Trebi" "Velvet" [1] "Manchuria" "Peatland" "Svansota" "Trebi" "Velvet" [1] "Manchuria" "Peatland" "Svansota" "Trebi" "Velvet"

Notice that the data frame has abbreviations for site names, while variety names are given in full.

We will extract the data for 1932, at the DDDD site.
> Duluth1932 <> Duluth1932 <> Duluth1932 <> Duluth1932 <---- Barley[Barley$Year=="1932" & Barley$Site=="D", Barley[Barley$Year=="1932" & Barley$Site=="D", Barley[Barley$Year=="1932" & Barley$Site=="D", Barley[Barley$Year=="1932" & Barley$Site=="D",

+ c("Variety","Yield")]+ c("Variety","Yield")]+ c("Variety","Yield")]+ c("Variety","Yield")]

> Duluth1932> Duluth1932> Duluth1932> Duluth1932

 Variety Yield Variety Yield Variety Yield Variety Yield

56 Manchuria 67.756 Manchuria 67.756 Manchuria 67.756 Manchuria 67.7

57 Svansota 66.757 Svansota 66.757 Svansota 66.757 Svansota 66.7

58 Velvet 67.58 Velvet 67.58 Velvet 67.58 Velvet 67.4444

59 Trebi 91.859 Trebi 91.859 Trebi 91.859 Trebi 91.8

60 Peatland 94.160 Peatland 94.160 Peatland 94.160 Peatland 94.1

The first column holds the row labels, which in this case are the numbers of the rows that have been extracted. In
place of c(“Variety”,“Yield”)c(“Variety”,“Yield”)c(“Variety”,“Yield”)c(“Variety”,“Yield”) we could have written, more simply, c(2,4)c(2,4)c(2,4)c(2,4).

7.3.2 Data Sets that Accompany R Libraries
Type in data()data()data()data() to get a list of data sets (mostly data frames) associated with all libraries that are in the current
search path. To get information on the data sets that are included in the base library, specify

data(package=”base”) # Hedata(package=”base”) # Hedata(package=”base”) # Hedata(package=”base”) # Here you must specify `package’, not `library’.re you must specify `package’, not `library’.re you must specify `package’, not `library’.re you must specify `package’, not `library’.

and similarly for any other library.

In order to bring any of these data frames into the working directory, specifically request it. (Ensure though that
the relevant library is attached.) Thus to bring in the data set airqualityairqualityairqualityairquality from the base library, type in

data(airquality)data(airquality)data(airquality)data(airquality)

The default Windows distribution includes the libraries BASE, EDA, STEPFUN (empirical distributions), and TS
(time series). Other libraries must be explicitly installed. For remaining sections of these notes, it will be useful
to have the MASS library installed. The current Windows version is bundled in the file VR61-6.zip, which you
can download from the directory of contributed packages at any of the CRAN sites.

The base library is automatically attached at the beginning of the session. To attach any other installed library,
use the library()library()library()library() (or, equivalently package()package()package()package()) command.

7.4 Data Entry
The function read.table()read.table()read.table()read.table() offers a ready means to read a rectangular array into an R data frame. Suppose
that the file primates.datprimates.datprimates.datprimates.dat contains:

"Potar monkey" 10 115"Potar monkey" 10 115"Potar monkey" 10 115"Potar monkey" 10 115

Gorilla 207 406Gorilla 207 406Gorilla 207 406Gorilla 207 406

Human 62 1320Human 62 1320Human 62 1320Human 62 1320

"Rhesus monkey" 6.8 179"Rhesus monkey" 6.8 179"Rhesus monkey" 6.8 179"Rhesus monkey" 6.8 179

Chimp 52.2 440Chimp 52.2 440Chimp 52.2 440Chimp 52.2 440

Then

66

primates <primates <primates <primates <---- read.table("a:/primates.txt") read.table("a:/primates.txt") read.table("a:/primates.txt") read.table("a:/primates.txt")

will create the data frame primatesprimatesprimatesprimates, from a file on the a:a:a:a: drive. The text strings in the first column will
become the first column in the data frame.

Suppose that primates is a data frame with three columns – species name, body weight, and brain weight. You
can give the columns names by typing in:

nnnnames(primates)<ames(primates)<ames(primates)<ames(primates)<----c(“Species”,"Bodywt","Brainwt")c(“Species”,"Bodywt","Brainwt")c(“Species”,"Bodywt","Brainwt")c(“Species”,"Bodywt","Brainwt")

Here then are the contents of the data frame.
> primates> primates> primates> primates

 Species Bodywt Brainwt Species Bodywt Brainwt Species Bodywt Brainwt Species Bodywt Brainwt

1 Potar monkey 10.0 1151 Potar monkey 10.0 1151 Potar monkey 10.0 1151 Potar monkey 10.0 115

2 Gorilla 207.0 4062 Gorilla 207.0 4062 Gorilla 207.0 4062 Gorilla 207.0 406

3 Human 62.0 13203 Human 62.0 13203 Human 62.0 13203 Human 62.0 1320

4 Rhesus monkey 6.8 4 Rhesus monkey 6.8 4 Rhesus monkey 6.8 4 Rhesus monkey 6.8 179179179179

5 Chimp 52.2 4405 Chimp 52.2 4405 Chimp 52.2 4405 Chimp 52.2 440

Specify header=TRUEheader=TRUEheader=TRUEheader=TRUE if there is an initial how of header information. If the number of headers is one less
than the number of columns of data, then the first column will be used, providing entries are unique, for row
labels.

7.4.1 Idiosyncrasies
The function read.table()read.table()read.table()read.table() is straightforward for reading in rectangular arrays of data that are entirely
numeric. When, as in the above example, one of the columns contains text strings, the column is by default
stored as a factor with as many different levels as there are unique text strings37.

Problems may arise when small mistakes in the data cause R to interpret a column of supposedly numeric data as
character strings, which are automatically turned into factors. For example there may be an O (oh) somewhere
where there should be a 0 (zero), or an el (llll) where there should be a one (1111). If you use any missing value
symbols other than the default (NANANANA), you need to make this explicit see section 7.3.2 below. Otherwise any
appearance of such symbols as ****, period(.) and blank (in a case where the separator is something other than a
space) will cause to whole column to be treated as character data.

Users who find this default behaviour of read.table() read.table() read.table() read.table() confusing may wish to use the parameter setting
as.is = TRUEas.is = TRUEas.is = TRUEas.is = TRUE. 38 If the column is later required for use as a factor in a model or graphics formula, it may be
necessary to make it into a factor at that time. Some functions do this conversion automatically.

7.4.2 Missing values when using read.table()read.table()read.table()read.table()
The function read.table()read.table()read.table()read.table() expects missing values to be coded as NANANANA, unless you set na.stringsna.stringsna.stringsna.strings to
recognise other characters as missing value indicators. If you have a text file that has been output from SAS,
you will probably want to set na.strings=c(".")na.strings=c(".")na.strings=c(".")na.strings=c(".")....

There may be multiple missing value indicators, e.g. na.strings=c(“NA”,".",”*”,"")na.strings=c(“NA”,".",”*”,"")na.strings=c(“NA”,".",”*”,"")na.strings=c(“NA”,".",”*”,""). The """""""" will
ensure that empty cells are entered as NANANANAs.

7.4.3 Separators when using read.table()read.table()read.table()read.table()
With data from spreadsheets39, it is sometimes necessary to use tab (“(“(“(“\\\\t”)t”)t”)t”) or comma as the separator. The
default separator is white space. To set tab as the separator, specify sep="sep="sep="sep="\\\\t"t"t"t".

37 Storage of columns of character strings as factors is efficient when a small number of distinct strings are each
repeated a large number of times.
38 Specifying as.is = Tas.is = Tas.is = Tas.is = T prevents columns of (intended or unintended) character strings from being converted
into factors.
39 One way to get mixed text and numeric data across from Excel is to save the worksheet in a .csv.csv.csv.csv text file
with comma as the separator. If for example file name is myfile.csvmyfile.csvmyfile.csvmyfile.csv and is on drive a:, use

67

7.5 Factors and Ordered Factors
We discussed factors in section 2.6.4. They provide an economical way to store vectors of character strings in
which there are many multiple occurrences of the same strings. More crucially, they have a central role in the
incorporation of qualitative effects into model and graphics formulae.

Factors have a dual identity. They are stored as integer vectors, with each of the values interpreted according to
the information that is in the table of levels40.

The data frame islandcitiesislandcitiesislandcitiesislandcities that accompanies these notes holds the populations of the 19 island nation
cities with a 1995 urban centre population of 1.4 million or more. The row names are the city names, the first
column (countrycountrycountrycountry) has the name of the country, and the second column (populationpopulationpopulationpopulation) has the urban centre
population, in millions. Here is a table that gives the number of times each country occurs
 Australia Cuba Indonesia Japan Philippines Taiwan United Kingdom
 3 1 4 6 2 1 2

[There are 19 cities in all.]

Printing the contents of the column with the name countrycountrycountrycountry gives the names, not the codes. As in most
operations with factors, R does the translation invisibly. There are though annoying exceptions that can make
the use of factors tricky. To be sure of getting the country names, specify

as.character(islandcities$country)as.character(islandcities$country)as.character(islandcities$country)as.character(islandcities$country)

To get the codes, specify
as.integer(islandcities$country)as.integer(islandcities$country)as.integer(islandcities$country)as.integer(islandcities$country)

By default, R sorts the level names in alphabetical order. If we form a table that has the number of times that
each country appears, this is the order that is used:

> table(islandcities$country)> table(islandcities$country)> table(islandcities$country)> table(islandcities$country)

 Australia Cuba Australia Cuba Australia Cuba Australia Cuba Indonesia Japan Philippines Taiwan United Kingdom Indonesia Japan Philippines Taiwan United Kingdom Indonesia Japan Philippines Taiwan United Kingdom Indonesia Japan Philippines Taiwan United Kingdom

 3 1 4 6 2 1 2 3 1 4 6 2 1 2 3 1 4 6 2 1 2 3 1 4 6 2 1 2

This order of the level names is purely a convenience. We might prefer countries to appear in order of latitude,
from North to South. We can change the order of the level names to reflect this desired order:

> lev <> lev <> lev <> lev <---- levels(islandcities$country) levels(islandcities$country) levels(islandcities$country) levels(islandcities$country)

> lev[c(7,4,6,2,5,3,1)]> lev[c(7,4,6,2,5,3,1)]> lev[c(7,4,6,2,5,3,1)]> lev[c(7,4,6,2,5,3,1)]

[1] "United Kingdom" "Japan" "Taiwan" "Cuba" [1] "United Kingdom" "Japan" "Taiwan" "Cuba" [1] "United Kingdom" "Japan" "Taiwan" "Cuba" [1] "United Kingdom" "Japan" "Taiwan" "Cuba"

[5] "Philippines" "Indonesia" "Australia" [5] "Philippines" "Indonesia" "Australia" [5] "Philippines" "Indonesia" "Australia" [5] "Philippines" "Indonesia" "Australia"

> country <> country <> country <> country <---- factor(islandcities$country, levels=lev[c(7,4,6,2,5,3,1)]) factor(islandcities$country, levels=lev[c(7,4,6,2,5,3,1)]) factor(islandcities$country, levels=lev[c(7,4,6,2,5,3,1)]) factor(islandcities$country, levels=lev[c(7,4,6,2,5,3,1)])

> table(country)> table(country)> table(country)> table(country)

 United Kingdom Japan Taiwan Cuba Philippines Indonesia Australia United Kingdom Japan Taiwan Cuba Philippines Indonesia Australia United Kingdom Japan Taiwan Cuba Philippines Indonesia Australia United Kingdom Japan Taiwan Cuba Philippines Indonesia Australia

 2 6 1 1 2 4 3 2 6 1 1 2 4 3 2 6 1 1 2 4 3 2 6 1 1 2 4 3

In ordered factors, i.e. factors with ordered levels, there are inequalities that relate factor levels.

Factors have the potential to cause a few surprises, so be careful! Here are two points to note:

1. When a vector of character strings becomes a column of a data frame, R by default turns it into a factor.
Enclose the vector of character strings in the wrapper function I()I()I()I() if it is to remain character.

2. There are some contexts in which factors become numeric vectors. To be sure of getting the vector of text
strings, specify e.g. as.chas.chas.chas.character(country)aracter(country)aracter(country)aracter(country).

3. To extract the numeric levels 1, 2, 3, …, specify as.numeric(country)as.numeric(country)as.numeric(country)as.numeric(country).

read.table("a:/myfile.csv", sep=",")read.table("a:/myfile.csv", sep=",")read.table("a:/myfile.csv", sep=",")read.table("a:/myfile.csv", sep=",") to read the data into R. This copes with any spaces which
may appear in text strings. [But watch that none of the cell entries include commas.]
40 Factors are vectors which have mode numeric and class “factor”. They have an attribute levels that holds the
level names.

68

7.6 Ordered Factors
Actually, it is their levels that are ordered. To create an ordered factor, or to turn a factor into an ordered factor,
use the function ordered()ordered()ordered()ordered(). The levels of an ordered factor are assumed to specify positions on an ordinal
scale. Try

> stress.level<> stress.level<> stress.level<> stress.level<----rep(c("low","medium","high"),2)rep(c("low","medium","high"),2)rep(c("low","medium","high"),2)rep(c("low","medium","high"),2)

> ordf.stress<> ordf.stress<> ordf.stress<> ordf.stress<----ordered(stress.level, levels=c("low","medium","high"))ordered(stress.level, levels=c("low","medium","high"))ordered(stress.level, levels=c("low","medium","high"))ordered(stress.level, levels=c("low","medium","high"))

> ordf.stress> ordf.stress> ordf.stress> ordf.stress

[1] low medium high low [1] low medium high low [1] low medium high low [1] low medium high low medium high medium high medium high medium high

Levels: low < medium < high Levels: low < medium < high Levels: low < medium < high Levels: low < medium < high

> ordf.stress<"medium"> ordf.stress<"medium"> ordf.stress<"medium"> ordf.stress<"medium"

[1] TRUE FALSE FALSE TRUE FALSE FALSE[1] TRUE FALSE FALSE TRUE FALSE FALSE[1] TRUE FALSE FALSE TRUE FALSE FALSE[1] TRUE FALSE FALSE TRUE FALSE FALSE

> ordf.stress>="medium"> ordf.stress>="medium"> ordf.stress>="medium"> ordf.stress>="medium"

[1] FALSE TRUE TRUE FALSE TRUE TRUE[1] FALSE TRUE TRUE FALSE TRUE TRUE[1] FALSE TRUE TRUE FALSE TRUE TRUE[1] FALSE TRUE TRUE FALSE TRUE TRUE

Later we will meet the notion of inheritance. Ordered factors inherit the attributes of factors, and have a further
ordering attribute. When you ask for the class of an object, you get details both of the class of the object, and of
any classes from which it inherits. Thus:

> class(ordf.stress)> class(ordf.stress)> class(ordf.stress)> class(ordf.stress)

[1] "ordered" "factor" [1] "ordered" "factor" [1] "ordered" "factor" [1] "ordered" "factor"

7.7 Lists
Lists make it possible to collect an arbitrary set of R objects together under a single name. You might for
example collect together vectors of several different modes and lengths, scalars, matrices or more general arrays,
functions, etc. Lists can be, and often are, a rag-tag of different objects. We will use for illustration the list
object that R creates as output from an lmlmlmlm calculation.

For example, suppose that we create a linear model (lm) object elastic.lmelastic.lmelastic.lmelastic.lm (c. f. sections 1.1.4 and 2..1.4) by
specifying

elasticelasticelasticelastic.lm <.lm <.lm <.lm <---- lm(distance~stretch, data= lm(distance~stretch, data= lm(distance~stretch, data= lm(distance~stretch, data=elasticbandelasticbandelasticbandelasticband))))

It is readily verified that elastic.lmelastic.lmelastic.lmelastic.lm consists of a variety of different kinds of objects, stored as a list. You
can get the names of these objects by typing in

> names(elastic.lm)> names(elastic.lm)> names(elastic.lm)> names(elastic.lm)

 [1] "coefficients [1] "coefficients [1] "coefficients [1] "coefficients" "residuals" "effects" "rank" " "residuals" "effects" "rank" " "residuals" "effects" "rank" " "residuals" "effects" "rank"

 [5] "fitted.values" "assign" "qr" "df.residual" [5] "fitted.values" "assign" "qr" "df.residual" [5] "fitted.values" "assign" "qr" "df.residual" [5] "fitted.values" "assign" "qr" "df.residual"

 [9] "xlevels" "call" "terms" "model" [9] "xlevels" "call" "terms" "model" [9] "xlevels" "call" "terms" "model" [9] "xlevels" "call" "terms" "model"

The first list element is:
> > > > elasticelasticelasticelastic.lm$coefficients.lm$coefficients.lm$coefficients.lm$coefficients

(Intercept) (Intercept) (Intercept) (Intercept) stretch stretch stretch stretch

 ----63.571429 4.553571 63.571429 4.553571 63.571429 4.553571 63.571429 4.553571

Alternative ways to extract this first list element are:
elasticelasticelasticelastic.lm[["coefficients"]].lm[["coefficients"]].lm[["coefficients"]].lm[["coefficients"]]

elasticelasticelasticelastic.lm[[1]].lm[[1]].lm[[1]].lm[[1]]

We can alternatively ask for the sublist whose only element is the vector elastic.lm$coefficientselastic.lm$coefficientselastic.lm$coefficientselastic.lm$coefficients. For
this, specify elastic.lm[“coefficients”]elastic.lm[“coefficients”]elastic.lm[“coefficients”]elastic.lm[“coefficients”] or elastic.lm[1]elastic.lm[1]elastic.lm[1]elastic.lm[1]. There is a subtle difference in the
result that is printed out. The information is preceded by $coefficients$coefficients$coefficients$coefficients, meaning “list element with name
coefficientscoefficientscoefficientscoefficients”.

> > > > elasticelasticelasticelastic.lm[1].lm[1].lm[1].lm[1]

$coefficients$coefficients$coefficients$coefficients

(Intercept) stretc(Intercept) stretc(Intercept) stretc(Intercept) stretch h h h

 ----63.571429 4.55357163.571429 4.55357163.571429 4.55357163.571429 4.553571

69

The second list element is a vector of length 7
> options(digits=3)> options(digits=3)> options(digits=3)> options(digits=3)

> > > > elasticelasticelasticelastic.lm$residuals.lm$residuals.lm$residuals.lm$residuals

 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

 2.107 2.107 2.107 2.107 ----0.321 18.000 1.893 0.321 18.000 1.893 0.321 18.000 1.893 0.321 18.000 1.893 ----27.786 13.321 27.786 13.321 27.786 13.321 27.786 13.321 ----7.214 7.214 7.214 7.214

The tenth list element documents the function call:
> > > > elasticelasticelasticelastic.lm$call.lm$call.lm$call.lm$call

lm(formula = distance ~ stretch, data = lm(formula = distance ~ stretch, data = lm(formula = distance ~ stretch, data = lm(formula = distance ~ stretch, data = elasticbandelasticbandelasticbandelasticband))))

> mode(> mode(> mode(> mode(elasticelasticelasticelastic.lm$call).lm$call).lm$call).lm$call)

[1] "call"[1] "call"[1] "call"[1] "call"

*7.8 Matrices and Arrays
In these notes the use of matrices and arrays will be quite limited. For almost everything we do here, data frames
have more general relevance, and achieve what we require. Matrices are likely to be important for those users
who wish to implement new regression and multivariate methods.

All the elements of a matrix have the same mode, i.e. all numeric, or all character. Thus a matrix is a more
restricted structure than a data frame. One reason for numeric matrices is that they allow a variety of
mathematical operations that are not available for data frames. Another reason is that matrixmatrixmatrixmatrix generalises to
arrayarrayarrayarray, which may have more than two dimensions.

Note that matrices are stored columnwise. Thus consider
> xx <> xx <> xx <> xx <---- matrix(1:6,ncol=3) # Equivalently, enter matrix(1:6,nrow=2) matrix(1:6,ncol=3) # Equivalently, enter matrix(1:6,nrow=2) matrix(1:6,ncol=3) # Equivalently, enter matrix(1:6,nrow=2) matrix(1:6,ncol=3) # Equivalently, enter matrix(1:6,nrow=2)

> xx> xx> xx> xx

 [,1] [,2] [,3] [,1] [,2] [,3] [,1] [,2] [,3] [,1] [,2] [,3]

[1,] 1 3 5[1,] 1 3 5[1,] 1 3 5[1,] 1 3 5

[2,] 2 4 6[2,] 2 4 6[2,] 2 4 6[2,] 2 4 6

If xxxxxxxx is any matrix, the assignment
x <x <x <x <---- as.vector(xx) as.vector(xx) as.vector(xx) as.vector(xx)

places columns of xxxxxxxx, in order, into the vector xxxx. In the example above, we get back the elements 1, 2, . . . , 6.

Names may be assigned to the rows and columns of a matrix. We give details below.

Matrices have the attribute “dimension”. Thus
> dim(xx)> dim(xx)> dim(xx)> dim(xx)

[1] 2 3[1] 2 3[1] 2 3[1] 2 3

In fact a matrix is a vector (numeric or character) whose dimension attribute has length 2.

Now set
> x34 <> x34 <> x34 <> x34 <---- matrix(1:12,ncol=4) matrix(1:12,ncol=4) matrix(1:12,ncol=4) matrix(1:12,ncol=4)

> x34> x34> x34> x34

 [,1] [,2] [,3] [,4] [,1] [,2] [,3] [,4] [,1] [,2] [,3] [,4] [,1] [,2] [,3] [,4]

[1,] 1 4 7 10[1,] 1 4 7 10[1,] 1 4 7 10[1,] 1 4 7 10

[2,] 2 [2,] 2 [2,] 2 [2,] 2 5 8 115 8 115 8 115 8 11

[3,] 3 6 9 12[3,] 3 6 9 12[3,] 3 6 9 12[3,] 3 6 9 12

Here are examples of the extraction of columns or rows or submatrices
x34[2:3,c(1,4)] # Extract rows 2 & 3 & columns 1 & 4x34[2:3,c(1,4)] # Extract rows 2 & 3 & columns 1 & 4x34[2:3,c(1,4)] # Extract rows 2 & 3 & columns 1 & 4x34[2:3,c(1,4)] # Extract rows 2 & 3 & columns 1 & 4

x34[2,] # Extract the second rowx34[2,] # Extract the second rowx34[2,] # Extract the second rowx34[2,] # Extract the second row

x34[x34[x34[x34[----2,] # Extract all rows except the second2,] # Extract all rows except the second2,] # Extract all rows except the second2,] # Extract all rows except the second

x34[x34[x34[x34[----2,2,2,2,----3] # 3] # 3] # 3] # Extract the matrix obtained by omitting row 2 & column 3Extract the matrix obtained by omitting row 2 & column 3Extract the matrix obtained by omitting row 2 & column 3Extract the matrix obtained by omitting row 2 & column 3

The dimnames()dimnames()dimnames()dimnames() function assigns and/or extracts matrix row and column names. The dimnames()dimnames()dimnames()dimnames() function
gives a list, in which the first list element is the vector of row names, and the second list element is the vector of
column names. This generalises in the obvious way for use with arrays, which we now discuss.

70

7.8.1 Arrays
The generalisation from a matrix (2 dimensions) to allow > 2 dimensions gives an array. A matrix is a 2-
dimensional array.

Consider a numeric vector of length 24. So that we can easily keep track of the elements, we will make them 1,
2, .., 24. Thus

x <x <x <x <---- 1:24 1:24 1:24 1:24

Then
dim(x) <dim(x) <dim(x) <dim(x) <---- c(4,6) c(4,6) c(4,6) c(4,6)

turns this into a 4 x 6 matrix.
> x> x> x> x

 [,1] [,2] [,3] [,4] [,5] [,6] [,1] [,2] [,3] [,4] [,5] [,6] [,1] [,2] [,3] [,4] [,5] [,6] [,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 5 9 1[1,] 1 5 9 1[1,] 1 5 9 1[1,] 1 5 9 13 17 213 17 213 17 213 17 21

[2,] 2 6 10 14 18 22[2,] 2 6 10 14 18 22[2,] 2 6 10 14 18 22[2,] 2 6 10 14 18 22

[3,] 3 7 11 15 19 23[3,] 3 7 11 15 19 23[3,] 3 7 11 15 19 23[3,] 3 7 11 15 19 23

[4,] 4 8 12 16 20 24[4,] 4 8 12 16 20 24[4,] 4 8 12 16 20 24[4,] 4 8 12 16 20 24

Now try
> dim(x) <> dim(x) <> dim(x) <> dim(x) <----c(3,4,2)c(3,4,2)c(3,4,2)c(3,4,2)

> x> x> x> x

, , 1, , 1, , 1, , 1

 [,1] [,2] [,3] [,4] [,1] [,2] [,3] [,4] [,1] [,2] [,3] [,4] [,1] [,2] [,3] [,4]

[1,] 1 4 7 10[1,] 1 4 7 10[1,] 1 4 7 10[1,] 1 4 7 10

[2,] 2 5 8 11[2,] 2 5 8 11[2,] 2 5 8 11[2,] 2 5 8 11

[3,] 3 6 9 1[3,] 3 6 9 1[3,] 3 6 9 1[3,] 3 6 9 12222

, , 2, , 2, , 2, , 2

 [,1] [,2] [,3] [,4] [,1] [,2] [,3] [,4] [,1] [,2] [,3] [,4] [,1] [,2] [,3] [,4]

[1,] 13 16 19 22[1,] 13 16 19 22[1,] 13 16 19 22[1,] 13 16 19 22

[2,] 14 17 20 23[2,] 14 17 20 23[2,] 14 17 20 23[2,] 14 17 20 23

[3,] 15 18 21 24[3,] 15 18 21 24[3,] 15 18 21 24[3,] 15 18 21 24

7.8.2 Conversion of Numeric Data frames into Matrices
There are various manipulations that are available for matrices, but not for data frames. Use as.matrix()as.matrix()as.matrix()as.matrix() to
handle any conversion that may be necessary.

7.9 Different Types of Attachments
When R starts up, it has a list of directories where it looks, in order, for objects. You can inspect the current list
by typing in search()search()search()search(). The working directory comes first on the search list.

You can extend the search list in two ways. The library()library()library()library() command adds libraries. Alternatively, or in
addition, the attach() attach() attach() attach() command places a data frame on the search list. A data frame is in fact a specialised
list, with its columns as the objects. Recall the syntax

> attach(primates) # NB: No quotes> attach(primates) # NB: No quotes> attach(primates) # NB: No quotes> attach(primates) # NB: No quotes

> detach(primates) # NB: S> detach(primates) # NB: S> detach(primates) # NB: S> detach(primates) # NB: S----PLUS requires detach(“primates”)PLUS requires detach(“primates”)PLUS requires detach(“primates”)PLUS requires detach(“primates”)

7.10 Exercises
1. Generate the numbers 101, 102, …, 112, and store the result in the vector xxxx.

2. Generate four repeats of the sequence of numbers (4, 6, 3).

71

3. Generate the sequence consisting of eight 4s, then seven 6s, and finally nine 3s.

4. Create a vector consisting of one 1, then two 2’s, three 3’s, etc., and ending with nine 9’s.

5. Determine, for each of the columns of the data frame airqualityairqualityairqualityairquality (base library), the median, mean, upper
and lower quartiles, and range.
[Specify data(airquality) data(airquality) data(airquality) data(airquality) to bring the data frame airqualityairqualityairqualityairquality into the working directory.]

6. For each of the following calculations, decide what you would expect, and then check to see if you were right!

 a)
answer <answer <answer <answer <---- c(2, 7, 1, 5, 12, 3, 4) c(2, 7, 1, 5, 12, 3, 4) c(2, 7, 1, 5, 12, 3, 4) c(2, 7, 1, 5, 12, 3, 4)

for (j in 2:length(answer)){ answer[j] <for (j in 2:length(answer)){ answer[j] <for (j in 2:length(answer)){ answer[j] <for (j in 2:length(answer)){ answer[j] <---- max(answer[j],answer[j max(answer[j],answer[j max(answer[j],answer[j max(answer[j],answer[j----1])}1])}1])}1])}

 b)
answer <answer <answer <answer <---- c(2, 7, 1, 5, 12, 3, 4) c(2, 7, 1, 5, 12, 3, 4) c(2, 7, 1, 5, 12, 3, 4) c(2, 7, 1, 5, 12, 3, 4)

for (j in 2:length(answer)){ answer[jfor (j in 2:length(answer)){ answer[jfor (j in 2:length(answer)){ answer[jfor (j in 2:length(answer)){ answer[j] <] <] <] <---- sum(answer[j],answer[j sum(answer[j],answer[j sum(answer[j],answer[j sum(answer[j],answer[j----1])}1])}1])}1])}

7. In the built-in data frame airqualityairqualityairqualityairquality (a) extract the row or rows for which OzoneOzoneOzoneOzone has its maximum
value; and (b) extract the vector of values of WindWindWindWind for values of OzoneOzoneOzoneOzone that are above the upper quartile.

8. Refer to the Eurasian snow data that is given in Exercise 1.6 . Find the mean of the snow cover (a) for the
odd-numbered years and (b) for the even-numbered years.

9. Determine which columns of the data frame Cars93Cars93Cars93Cars93 (MASS library) are factors. For each of these factor
columns, print out the levels vector. Which of these are ordered factors?

10. Use summary()summary()summary()summary() to get information about data in the data frames airqualityairqualityairqualityairquality, attitudeattitudeattitudeattitude (both in the
base library), and cpuscpuscpuscpus (MASS library). Write brief notes, for each of these data sets, on what you have
been able to learn.

11. From the data frame mtcarsmtcarsmtcarsmtcars (MASS library) extract a data frame mtcars6mtcars6mtcars6mtcars6 that holds only the
information for cars with 6 cylinders.

12. From the data frame Cars93Cars93Cars93Cars93 (MASS library) extract a data frame which holds only information for small
and sporty cars.

13. Store the numbers obtained in exercise 2, in order, in the columns of a 3 x 4 matrix.

14. Store the numbers obtained in exercise 3, in order, in the columns of a 6 by 4 matrix. Extract the matrix
consisting of rows 3 to 6 and columns 3 and 4, of this matrix.

72

73

8. Useful Functions

8.1 Confidence Intervals and Tests
Use the help to get complete information. Below, I note two of the simpler functions.

8.1.1 The t-test and associated confidence interval
Use t.test()t.test()t.test()t.test(). This allows both a one-sample and a two-sample test.

8.1.2 Chi-Square tests for two-way tables
Use chisq.test()chisq.test()chisq.test()chisq.test() for a test for no association between rows and columns in the output from table()table()table()table().
Alternatively, the argument may be a matrix.

This test that counts enter independently into the cells of a table. For example, the test is invalid if there is
clustering in the data.

8.2 Matching and Ordering
> match(<vec1>, <vec2>) ## For each element of <vec1>, returns the > match(<vec1>, <vec2>) ## For each element of <vec1>, returns the > match(<vec1>, <vec2>) ## For each element of <vec1>, returns the > match(<vec1>, <vec2>) ## For each element of <vec1>, returns the

 ## pos ## pos ## pos ## position of the first occurrence in <vec2>ition of the first occurrence in <vec2>ition of the first occurrence in <vec2>ition of the first occurrence in <vec2>

> order(<vector>) ## Returns the vector of subscripts giving> order(<vector>) ## Returns the vector of subscripts giving> order(<vector>) ## Returns the vector of subscripts giving> order(<vector>) ## Returns the vector of subscripts giving

 ## the order in which elements must be taken ## the order in which elements must be taken ## the order in which elements must be taken ## the order in which elements must be taken

 ## so that <vector> will be sorted. ## so that <vector> will be sorted. ## so that <vector> will be sorted. ## so that <vector> will be sorted.

> rank(<vector>) > rank(<vector>) > rank(<vector>) > rank(<vector>) ## Returns the ranks of the successive elements. ## Returns the ranks of the successive elements. ## Returns the ranks of the successive elements. ## Returns the ranks of the successive elements.

Numeric vectors will be sorted in numerical order. Character vectors will be sorted in alphanumeric order.

The function match()match()match()match() can be used in all sorts of clever ways to pick out subsets of data. For example:
> x <> x <> x <> x <---- rep(1:5,rep(3,5)) rep(1:5,rep(3,5)) rep(1:5,rep(3,5)) rep(1:5,rep(3,5))

> x> x> x> x

 [1] 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 [1] 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 [1] 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 [1] 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

> two4 <> two4 <> two4 <> two4 <---- match(x,c(2,4), nomatch=0) match(x,c(2,4), nomatch=0) match(x,c(2,4), nomatch=0) match(x,c(2,4), nomatch=0)

> two4> two4> two4> two4

 [1] 0 0 0 1 1 1 0 0 0 2 2 2 0 0 0 [1] 0 0 0 1 1 1 0 0 0 2 2 2 0 0 0 [1] 0 0 0 1 1 1 0 0 0 2 2 2 0 0 0 [1] 0 0 0 1 1 1 0 0 0 2 2 2 0 0 0

> # We can use this to pick out the 2s and the 4s> # We can use this to pick out the 2s and the 4s> # We can use this to pick out the 2s and the 4s> # We can use this to pick out the 2s and the 4s

> as.logical(two4)> as.logical(two4)> as.logical(two4)> as.logical(two4)

 [1] FALSE FALSE FALSE TRUE T [1] FALSE FALSE FALSE TRUE T [1] FALSE FALSE FALSE TRUE T [1] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUERUE TRUE FALSE FALSE FALSE TRUE TRUE TRUERUE TRUE FALSE FALSE FALSE TRUE TRUE TRUERUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE

[13] FALSE FALSE FALSE[13] FALSE FALSE FALSE[13] FALSE FALSE FALSE[13] FALSE FALSE FALSE

> x[as.logical(two4)]> x[as.logical(two4)]> x[as.logical(two4)]> x[as.logical(two4)]

[1] 2 2 2 4 4 4[1] 2 2 2 4 4 4[1] 2 2 2 4 4 4[1] 2 2 2 4 4 4

8.3 String Functions
substring(<vector of text strings>, <first position>, <last position>)substring(<vector of text strings>, <first position>, <last position>)substring(<vector of text strings>, <first position>, <last position>)substring(<vector of text strings>, <first position>, <last position>)

nchar(<vector of text strings>) nchar(<vector of text strings>) nchar(<vector of text strings>) nchar(<vector of text strings>)

 ## Returns vector of number of characters in each element. ## Returns vector of number of characters in each element. ## Returns vector of number of characters in each element. ## Returns vector of number of characters in each element.

*8.3.1 Operations with Vectors of Text Strings – A Further Example
We will work with the column MakeMakeMakeMake in the dataset Cars93 Cars93 Cars93 Cars93 from the MASS library.

library(mass) # if neededlibrary(mass) # if neededlibrary(mass) # if neededlibrary(mass) # if needed

data(data(data(data(Cars93) # if neededCars93) # if neededCars93) # if neededCars93) # if needed

To extract the first part of the name, up to the first space, specify

74

car.brandnames <car.brandnames <car.brandnames <car.brandnames <---- substring(Cars93$Make, 1, nblank substring(Cars93$Make, 1, nblank substring(Cars93$Make, 1, nblank substring(Cars93$Make, 1, nblank----1)1)1)1)

> car.brandnames[1:5]> car.brandnames[1:5]> car.brandnames[1:5]> car.brandnames[1:5]

[1] "Acura" "Acura" "Audi" "Audi" "BMW"[1] "Acura" "Acura" "Audi" "Audi" "BMW"[1] "Acura" "Acura" "Audi" "Audi" "BMW"[1] "Acura" "Acura" "Audi" "Audi" "BMW"

To find the position at which the first space appears, we might do the following:
nblank <nblank <nblank <nblank <---- sapply(Cars93$Make, function(x){n < sapply(Cars93$Make, function(x){n < sapply(Cars93$Make, function(x){n < sapply(Cars93$Make, function(x){n <---- nchar(x); nchar(x); nchar(x); nchar(x);

 a < a < a < a <---- substring(x, 1:n, 1:n); m < substring(x, 1:n, 1:n); m < substring(x, 1:n, 1:n); m < substring(x, 1:n, 1:n); m <---- match(" ", a,nomatch=1); m}) match(" ", a,nomatch=1); m}) match(" ", a,nomatch=1); m}) match(" ", a,nomatch=1); m})

8.4 Application of a Function to the Columns of an Array or Data Frame
apply(<array>, <dimenapply(<array>, <dimenapply(<array>, <dimenapply(<array>, <dimension>, <function>)sion>, <function>)sion>, <function>)sion>, <function>)

lapply(<list>, <function>) lapply(<list>, <function>) lapply(<list>, <function>) lapply(<list>, <function>)

 ## N. B. A dataframe is a list. Output is a list. ## N. B. A dataframe is a list. Output is a list. ## N. B. A dataframe is a list. Output is a list. ## N. B. A dataframe is a list. Output is a list.

sapply(<list>, <function>) sapply(<list>, <function>) sapply(<list>, <function>) sapply(<list>, <function>)

 ## As lapply(), but simplify (e.g. to a vector ## As lapply(), but simplify (e.g. to a vector ## As lapply(), but simplify (e.g. to a vector ## As lapply(), but simplify (e.g. to a vector

 ## or matrix), if possibl ## or matrix), if possibl ## or matrix), if possibl ## or matrix), if possible.e.e.e.

8.4.1 apply()
The function apply() can be used on data frames as well as matrices. Here is an example:

> apply(airquality,2,mean) # All elements must be numeric!> apply(airquality,2,mean) # All elements must be numeric!> apply(airquality,2,mean) # All elements must be numeric!> apply(airquality,2,mean) # All elements must be numeric!

 Ozone Solar.R Wind Temp Month Day Ozone Solar.R Wind Temp Month Day Ozone Solar.R Wind Temp Month Day Ozone Solar.R Wind Temp Month Day

 NA NA 9.96 77.88 6.99 NA NA 9.96 77.88 6.99 NA NA 9.96 77.88 6.99 NA NA 9.96 77.88 6.99 15.80 15.80 15.80 15.80

> apply(airquality,2,mean,na.rm=T)> apply(airquality,2,mean,na.rm=T)> apply(airquality,2,mean,na.rm=T)> apply(airquality,2,mean,na.rm=T)

 Ozone Solar.R Wind Temp Month Day Ozone Solar.R Wind Temp Month Day Ozone Solar.R Wind Temp Month Day Ozone Solar.R Wind Temp Month Day

 42.13 185.93 9.96 77.88 6.99 15.80 42.13 185.93 9.96 77.88 6.99 15.80 42.13 185.93 9.96 77.88 6.99 15.80 42.13 185.93 9.96 77.88 6.99 15.80

The use of apply(airquality,1,mean)apply(airquality,1,mean)apply(airquality,1,mean)apply(airquality,1,mean) will give means for each row. These are not, for these data,
useful information!

8.4.2 sapply()
The function sapply()sapply()sapply()sapply() can be useful for getting information about the columns of a data frame. Here we use it
to count that number of missing values in each column of the built-in data frame airqualityairqualityairqualityairquality.

> sapply(airquality, function(x)su> sapply(airquality, function(x)su> sapply(airquality, function(x)su> sapply(airquality, function(x)sum(is.na(x)))m(is.na(x)))m(is.na(x)))m(is.na(x)))

 Ozone Solar.R Wind Temp Month Day Ozone Solar.R Wind Temp Month Day Ozone Solar.R Wind Temp Month Day Ozone Solar.R Wind Temp Month Day

 37 7 0 0 0 0 37 7 0 0 0 0 37 7 0 0 0 0 37 7 0 0 0 0

Here are several further examples that use the data frame mothsmothsmothsmoths that accompanies these notes:
> sapply(moths,is.factor)> sapply(moths,is.factor)> sapply(moths,is.factor)> sapply(moths,is.factor) # Determine which columns# Determine which columns# Determine which columns# Determine which columns are factors are factors are factors are factors

 meters A P habitat meters A P habitat meters A P habitat meters A P habitat

 FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE

> # How many levels does each factor have?> # How many levels does each factor have?> # How many levels does each factor have?> # How many levels does each factor have?

> sapply(moths, function(x)if(!is.factor(x))return(0) else length(levels(x)))> sapply(moths, function(x)if(!is.factor(x))return(0) else length(levels(x)))> sapply(moths, function(x)if(!is.factor(x))return(0) else length(levels(x)))> sapply(moths, function(x)if(!is.factor(x))return(0) else length(levels(x)))

 meters A P habitat meters A P habitat meters A P habitat meters A P habitat

 0 0 0 0 0 0 0 0 0 0 0 0 8 8 8 8

*8.5 tapply()
The arguments are a variable, a list of factors, and a function that operates on a vector to return a single value.
For each combination of factor levels, the function is applied to corresponding values of the variable. The
output is an array with as many dimensions as there are factors. Where there are no data values for a particular
combination of factor levels, NANANANA is returned.

Often one wishes to get back, not an array, but a data frame with one row for each combination of factor levels.
For example, we may have a data frame with two factors and a numeric variable, and want to create a new data

75

frame with all possible combinations of the factors, and the cell means as the response. Here is an example of
how to do it.

First, use tapply()tapply()tapply()tapply() to produce an array of cell means. The function dimnames()dimnames()dimnames()dimnames(), applied to this array,
returns a list whose first element holds the row names (i.e. for the level names for the first factor), and whose
second element holds the column names. [Further dimensions are possible.] We pass this list (row names,
column names) to expand.grid()expand.grid()expand.grid()expand.grid(), which returns a data frame with all possible combinations of the factor
levels. Finally, stretch the array of means out into a vector, and append this to the data frame. Here is an
example using the data set cabbagescabbagescabbagescabbages from the MASS library.

> data(cabbages)> data(cabbages)> data(cabbages)> data(cabbages)

> names(cabbages)> names(cabbages)> names(cabbages)> names(cabbages)

[1] "Cult" "Date" "HeadWt" "VitC" [1] "Cult" "Date" "HeadWt" "VitC" [1] "Cult" "Date" "HeadWt" "VitC" [1] "Cult" "Date" "HeadWt" "VitC"

> sapply(cabbages, levels)> sapply(cabbages, levels)> sapply(cabbages, levels)> sapply(cabbages, levels)

$Cult$Cult$Cult$Cult

[1] "c39" "c52"[1] "c39" "c52"[1] "c39" "c52"[1] "c39" "c52"

$Date$Date$Date$Date

[1] "d16" "d20" "d21"[1] "d16" "d20" "d21"[1] "d16" "d20" "d21"[1] "d16" "d20" "d21"

$HeadWt$HeadWt$HeadWt$HeadWt

NULLNULLNULLNULL

$VitC$VitC$VitC$VitC

NULLNULLNULLNULL

> attach(cabbages)> attach(cabbages)> attach(cabbages)> attach(cabbages)

> cabbages.tab <> cabbages.tab <> cabbages.tab <> cabbages.tab <---- tapply(HeadWt, list(Cult, Date), mean) tapply(HeadWt, list(Cult, Date), mean) tapply(HeadWt, list(Cult, Date), mean) tapply(HeadWt, list(Cult, Date), mean)

> cabbages.tab > cabbages.tab > cabbages.tab > cabbages.tab # Two varieties by three planting dates# Two varieties by three planting dates# Two varieties by three planting dates# Two varieties by three planting dates

 d16 d20 d21 d16 d20 d21 d16 d20 d21 d16 d20 d21

c39 3.18 2.80 2.74c39 3.18 2.80 2.74c39 3.18 2.80 2.74c39 3.18 2.80 2.74

c52 2.26 3.11 1.47c52 2.26 3.11 1.47c52 2.26 3.11 1.47c52 2.26 3.11 1.47

> cabbages.nam <> cabbages.nam <> cabbages.nam <> cabbages.nam <---- dimnames(cabbages.tab) dimnames(cabbages.tab) dimnames(cabbages.tab) dimnames(cabbages.tab)

> cabbages.nam > cabbages.nam > cabbages.nam > cabbages.nam #### There are 2 dimensions, therefore 2 list elements There are 2 dimensions, therefore 2 list elements There are 2 dimensions, therefore 2 list elements There are 2 dimensions, therefore 2 list elements

[[1]][[1]][[1]][[1]]

[1] "c39" "c52"[1] "c39" "c52"[1] "c39" "c52"[1] "c39" "c52"

[[2]][[2]][[2]][[2]]

[1] "d16" "d20" "d21"[1] "d16" "d20" "d21"[1] "d16" "d20" "d21"[1] "d16" "d20" "d21"

> > > > ## We now stretch the array of means out into a vector, and create## We now stretch the array of means out into a vector, and create## We now stretch the array of means out into a vector, and create## We now stretch the array of means out into a vector, and create

> ## a new column of cabbages.df, named Means, that holds the means.> ## a new column of cabbages.df, named Means, that holds the means.> ## a new column of cabbages.df, named Means, that holds the means.> ## a new column of cabbages.df, named Means, that holds the means.

> cabbages.df> cabbages.df> cabbages.df> cabbages.df < < < <---- expand.grid(Cult=factor(cabbages.nam[[1]]), expand.grid(Cult=factor(cabbages.nam[[1]]), expand.grid(Cult=factor(cabbages.nam[[1]]), expand.grid(Cult=factor(cabbages.nam[[1]]),

+ Date=factor(cabbages.nam[[2]]))+ Date=factor(cabbages.nam[[2]]))+ Date=factor(cabbages.nam[[2]]))+ Date=factor(cabbages.nam[[2]]))

> cabbages.df$Means <> cabbages.df$Means <> cabbages.df$Means <> cabbages.df$Means <---- as.vector(cabbages.tab) as.vector(cabbages.tab) as.vector(cabbages.tab) as.vector(cabbages.tab)

> cabbages.df> cabbages.df> cabbages.df> cabbages.df

 Cult Date Means Cult Date Means Cult Date Means Cult Date Means

1 c39 d16 3.181 c39 d16 3.181 c39 d16 3.181 c39 d16 3.18

2 c52 d16 2.262 c52 d16 2.262 c52 d16 2.262 c52 d16 2.26

3 c39 d20 2.803 c39 d20 2.803 c39 d20 2.803 c39 d20 2.80

4 c52 d20 3.4 c52 d20 3.4 c52 d20 3.4 c52 d20 3.11111111

5 c39 d21 2.745 c39 d21 2.745 c39 d21 2.745 c39 d21 2.74

6 c52 d21 1.476 c52 d21 1.476 c52 d21 1.476 c52 d21 1.47

76

If there are no data for some combinations of factor levels, one might want to omit the corresponding rows.

8.6 Splitting Vectors and Data Frames Down into Lists – split()
As an example,

split(cabbages$Hesplit(cabbages$Hesplit(cabbages$Hesplit(cabbages$HeadWt, cabbages$Date)adWt, cabbages$Date)adWt, cabbages$Date)adWt, cabbages$Date)

returns a list with three elements, the first named “d16” and containing values of HeadWtHeadWtHeadWtHeadWt where DateDateDateDate has the
level d16d16d16d16, and similarly for the remaining lists with names “d20” and “d21”. You need to use split()split()split()split() in this
way in order to do side by side boxplots. The function boxplot()boxplot()boxplot()boxplot() takes as its first element a list in which the
first list element is the vector of values for the first boxplot, the second list element is the vector of values for the
second boxplot, and so on.

You can use split to split up a data frame into a list of data frames. For example
split(cabbages[,split(cabbages[,split(cabbages[,split(cabbages[,----1], cabbages$Date) # Split remaining columns1], cabbages$Date) # Split remaining columns1], cabbages$Date) # Split remaining columns1], cabbages$Date) # Split remaining columns

 # by levels of Date # by levels of Date # by levels of Date # by levels of Date

*8.7 Merging Data Frames
The data frame Cars93Cars93Cars93Cars93 (mass library) holds extensive information on data from 93 cars on sale in the USA in
1993. One of the variables, stored as a factor, is TypeTypeTypeType. I have created a data frame Cars93.summaryCars93.summaryCars93.summaryCars93.summary, in
which the row names are the distinct values of Type, while a later column holds two character abbreviations of
each of the car types, suitable for use in plotting.

> Cars93.summary> Cars93.summary> Cars93.summary> Cars93.summary

 Min.passengers Max.passengers No.of.cars abbrev Min.passengers Max.passengers No.of.cars abbrev Min.passengers Max.passengers No.of.cars abbrev Min.passengers Max.passengers No.of.cars abbrev

Compact 4 6 16 CCompact 4 6 16 CCompact 4 6 16 CCompact 4 6 16 C

Large 6 6 Large 6 6 Large 6 6 Large 6 6 11 L 11 L 11 L 11 L

Midsize 4 6 22 MMidsize 4 6 22 MMidsize 4 6 22 MMidsize 4 6 22 M

Small 4 5 21 SmSmall 4 5 21 SmSmall 4 5 21 SmSmall 4 5 21 Sm

Sporty 2 4 14 SpSporty 2 4 14 SpSporty 2 4 14 SpSporty 2 4 14 Sp

Van 7 8 9 VVan 7 8 9 VVan 7 8 9 VVan 7 8 9 V

We proceed thus to add a column that has the abbreviations to the data frame. Here however our demands are
simple, and we can proceed thus:

new.Cars93 <new.Cars93 <new.Cars93 <new.Cars93 <---- merge(x=Cars93,y=Cars93.summary[,4,drop=F], merge(x=Cars93,y=Cars93.summary[,4,drop=F], merge(x=Cars93,y=Cars93.summary[,4,drop=F], merge(x=Cars93,y=Cars93.summary[,4,drop=F],

 by.x="Type",by.y="row.names")by.x="Type",by.y="row.names")by.x="Type",by.y="row.names")by.x="Type",by.y="row.names")

This creates a data frame that has the abbreviations in the additional column with name “abbrev”“abbrev”“abbrev”“abbrev”.

If there had been rows with missing values of TypeTypeTypeType, these would have been omitted from the new data frame.
One can avoid this by making sure that TypeTypeTypeType has NA as one of its levels, in both data frames.

8.8 Dates
There are two libraries for working with dates — the date library and the chron library.

We demonstrate the use of the date library. The function as.date()date()date()date() will convert a character string into a dates
object. By default, dates are stored using January 1 1960 as origin. This is important when you use
as.integeras.integeras.integeras.integer to convert a date into an integer value.

> library(date) # library must be installed> library(date) # library must be installed> library(date) # library must be installed> library(date) # library must be installed

> as.date("1/1/60", order="dmy")> as.date("1/1/60", order="dmy")> as.date("1/1/60", order="dmy")> as.date("1/1/60", order="dmy")

[1] 1Jan60[1] 1Jan60[1] 1Jan60[1] 1Jan60

> as.date("1/12/60","dmy")> as.date("1/12/60","dmy")> as.date("1/12/60","dmy")> as.date("1/12/60","dmy")

[1] 1Dec60[1] 1Dec60[1] 1Dec60[1] 1Dec60

> as.date("1/12/60","dmy")> as.date("1/12/60","dmy")> as.date("1/12/60","dmy")> as.date("1/12/60","dmy")----as.date("1/1/60","dmy")as.date("1/1/60","dmy")as.date("1/1/60","dmy")as.date("1/1/60","dmy")

[1] 335[1] 335[1] 335[1] 335

> as.date("31/12/60","dmy")> as.date("31/12/60","dmy")> as.date("31/12/60","dmy")> as.date("31/12/60","dmy")

[1] 31Dec60[1] 31Dec60[1] 31Dec60[1] 31Dec60

77

> as.date("31/12/60","dmy")> as.date("31/12/60","dmy")> as.date("31/12/60","dmy")> as.date("31/12/60","dmy")----as.date("1/1/60","dmy")as.date("1/1/60","dmy")as.date("1/1/60","dmy")as.date("1/1/60","dmy")

[1] 365[1] 365[1] 365[1] 365

> as.integer(as.date("1/1/60","dmy"))> as.integer(as.date("1/1/60","dmy"))> as.integer(as.date("1/1/60","dmy"))> as.integer(as.date("1/1/60","dmy"))

[1] 0[1] 0[1] 0[1] 0

> as.integer(as.date("1/1/2000","dmy"))> as.integer(as.date("1/1/2000","dmy"))> as.integer(as.date("1/1/2000","dmy"))> as.integer(as.date("1/1/2000","dmy"))

[1] 14610[1] 14610[1] 14610[1] 14610

>>>> as.integer(as.date("29/2/2000","dmy")) as.integer(as.date("29/2/2000","dmy")) as.integer(as.date("29/2/2000","dmy")) as.integer(as.date("29/2/2000","dmy"))

[1] 14669[1] 14669[1] 14669[1] 14669

> as.integer(as.date("1/3/2000","dmy"))> as.integer(as.date("1/3/2000","dmy"))> as.integer(as.date("1/3/2000","dmy"))> as.integer(as.date("1/3/2000","dmy"))

[1] 14670[1] 14670[1] 14670[1] 14670

A wide variety of different formats are possible. Among the legal formats are 8-31-2000 (or 31-8-2000 if you
specify order=”dmy”order=”dmy”order=”dmy”order=”dmy”), 8/31/2000 (cf 31/8/2000), or August 31 2000.

Observe that one can subtract two dates and get the time between them in days. There are several functions
(including date.ddmmmyy()date.ddmmmyy()date.ddmmmyy()date.ddmmmyy()) for printing out dates in various different formats.

8.9 Exercises
1. For the data frame Cars93Cars93Cars93Cars93, get the information provided by summary() summary() summary() summary() for each level of TypeTypeTypeType.

(Use split() split() split() split().)

2. Determine the number of cars, in the data frame Cars93Cars93Cars93Cars93, for each OriginOriginOriginOrigin and TypeTypeTypeType.

3. In the data frame claimsclaimsclaimsclaims: (a) determine the number of rows of information for each age category
(ageageageage) and car type (typetypetypetype); (b) determine the total number of claims for each age category and car
type; (c) determine, for each age category and car type, the number of rows for which data are missing;
(d) determine, for each age category and car type, the total cost of claims.

4. Remove all the data frames and other objects that you have added to the working directory.
[If you have a vector that holds the names of the objects that were in the directory when you started, the
function additions()additions()additions()additions() will give the names of objects that have been added.]

5. Determine the number of days, according to R, between the following dates:

a) January 1 in the year 1700, and January 1 in the year 1800

b) January 1 in the year 1998, and January 1 in the year 2000

78

79

9. Writing Functions and other Code
We have already met several functions. Here is a function to convert Fahrenheit to Celsius:

> fahrenheit2celsius <> fahrenheit2celsius <> fahrenheit2celsius <> fahrenheit2celsius <---- function(fahrenheit=32:40)(fahrenheit function(fahrenheit=32:40)(fahrenheit function(fahrenheit=32:40)(fahrenheit function(fahrenheit=32:40)(fahrenheit----32)*5/932)*5/932)*5/932)*5/9

> # Now invoke the function> # Now invoke the function> # Now invoke the function> # Now invoke the function

> fahrenheit2celsius(c(40,50,60))> fahrenheit2celsius(c(40,50,60))> fahrenheit2celsius(c(40,50,60))> fahrenheit2celsius(c(40,50,60))

[1] 4.444444 10.000000 15.555556[1] 4.444444 10.000000 15.555556[1] 4.444444 10.000000 15.555556[1] 4.444444 10.000000 15.555556

The function returns the value (fahrenheit(fahrenheit(fahrenheit(fahrenheit----32)*5/932)*5/932)*5/932)*5/9. More generally, a function returns the value of the
last statement of the function. Unless the result from the function is assigned to a name, the result is printed.

Here is a function that prints out the mean and standard deviation of a set of numbers:
> mean.and.sd <> mean.and.sd <> mean.and.sd <> mean.and.sd <---- function(x=1:10){ function(x=1:10){ function(x=1:10){ function(x=1:10){

+ av <+ av <+ av <+ av <---- mean(x) mean(x) mean(x) mean(x)

+ sd <+ sd <+ sd <+ sd <---- sqrt(var(x)) sqrt(var(x)) sqrt(var(x)) sqrt(var(x))

+ c(mean=av, SD=sd)+ c(mean=av, SD=sd)+ c(mean=av, SD=sd)+ c(mean=av, SD=sd)

+ }+ }+ }+ }

>>>>

> # Now invoke the function> # Now invoke the function> # Now invoke the function> # Now invoke the function

> mean.and.sd()> mean.and.sd()> mean.and.sd()> mean.and.sd()

 mean SD mean SD mean SD mean SD

5.500000 5.500000 5.500000 5.500000 3.027650 3.027650 3.027650 3.027650

> mean.and.sd(hills$climb)> mean.and.sd(hills$climb)> mean.and.sd(hills$climb)> mean.and.sd(hills$climb)

 mean SD mean SD mean SD mean SD

1815.314 1619.151 1815.314 1619.151 1815.314 1619.151 1815.314 1619.151

9.1 Syntax and Semantics
A function is created using an assignment. On the right hand side, the parameters appear within round brackets.
You can, if you wish, give a default. In the example above the default was x = 1:10, so that users can run the
function without specifying a parameter, just to see what it does.

Following the closing “)” the function body appears. Except where the function body consists of just one
statement, this is enclosed between curly braces ({ }). The return value usually appears on the final line of the
function body. In the example above, this was the vector consisting of the two named elements mean and sd.

9.1.1 A Function that gives Data Frame Details
First we will define a function that accepts a vector xxxx as its only argument. It will allow us to determine whether
x is a factor, and if a factor, how many levels it has. The built-in function is.factor()is.factor()is.factor()is.factor() will return T if xxxx is a
factor, and otherwise F. The following function faclev()faclev()faclev()faclev() uses is.factor() is.factor() is.factor() is.factor() to test whether xxxx is a factor.
It prints out 0 if xxxx is not a factor, and otherwise the number of levels of xxxx.

> faclev <> faclev <> faclev <> faclev <---- function(x)if(!is.factor(x))return(0) else function(x)if(!is.factor(x))return(0) else function(x)if(!is.factor(x))return(0) else function(x)if(!is.factor(x))return(0) else

 length(levels(x)) length(levels(x)) length(levels(x)) length(levels(x))

Earlier, we encountered the function sapply() sapply() sapply() sapply() that can be used to repeat a calculation on all columns of a
data frame. [More generally, the first argument of sapply()sapply()sapply()sapply() may be a list.] To apply faclev()faclev()faclev()faclev() to all
columns of the data frame mothsmothsmothsmoths we can specify

> s> s> s> sapply(moths, faclev) apply(moths, faclev) apply(moths, faclev) apply(moths, faclev)

We can alternatively give the definition of faclevfaclevfaclevfaclev directly as the second argument of sapplysapplysapplysapply, thus
> sapply(moths, function(x)if(!is.factor(x))return(0) > sapply(moths, function(x)if(!is.factor(x))return(0) > sapply(moths, function(x)if(!is.factor(x))return(0) > sapply(moths, function(x)if(!is.factor(x))return(0)

else length(levels(x)))else length(levels(x)))else length(levels(x)))else length(levels(x)))

80

Finally, we may want to do similar calculations on a number of different data frames. So we create a function
check.df()check.df()check.df()check.df() that encapsulates the calculations. Here is the definition of check.df()check.df()check.df()check.df().

check.df <check.df <check.df <check.df <---- function(df=moths) function(df=moths) function(df=moths) function(df=moths)

 sapply(df, function(x)if(!is.factor(x))return(0) else sapply(df, function(x)if(!is.factor(x))return(0) else sapply(df, function(x)if(!is.factor(x))return(0) else sapply(df, function(x)if(!is.factor(x))return(0) else

 length(levels(x))) length(levels(x))) length(levels(x))) length(levels(x)))

9.1.2 Compare Working Directory Data Sets with a Reference Set
At the beginning of a new session, we might store the names of the objects in the working directory in the vector
dsetnamesdsetnamesdsetnamesdsetnames, thus:

dsetnamedsetnamedsetnamedsetnames <s <s <s <---- objects() objects() objects() objects()

Now suppose that we have a function additions()additions()additions()additions(), defined thus:
additions <additions <additions <additions <---- function(objnames = dsetnames) function(objnames = dsetnames) function(objnames = dsetnames) function(objnames = dsetnames)

{{{{

 newnames < newnames < newnames < newnames <---- objects(pos=1) objects(pos=1) objects(pos=1) objects(pos=1)

 existing < existing < existing < existing <---- as.logical(match(newnames, objnames, nomatch = 0)) as.logical(match(newnames, objnames, nomatch = 0)) as.logical(match(newnames, objnames, nomatch = 0)) as.logical(match(newnames, objnames, nomatch = 0))

 newnames[!existing newnames[!existing newnames[!existing newnames[!existing]]]]

}

At some later point in the session, we can enter
additions(dsetnames)additions(dsetnames)additions(dsetnames)additions(dsetnames)

to get the names of objects that have been added since the start of the session.

9.2 Issues for the Writing and Use of Functions
There can be many functions. Choose their names carefully, so that they are meaningful.

Choose meaningful names for arguments, even if this means that they are longer than one would like.
Remember that they can be abbreviated in actual use.

As far as possible, make code self-documenting. Use meaningful names for R objects. Ensure that the names
used reflect the hierarchies of files, data structures and code.

R allows the use of names for elements of vectors and lists, and for rows and columns of arrays and dataframes.
Consider the use of names rather than numbers when you pull out individual elements, columns etc. Thus
dead.tot[,”dead”]dead.tot[,”dead”]dead.tot[,”dead”]dead.tot[,”dead”] is more meaningful and safer than dead.tot[,2]dead.tot[,2]dead.tot[,2]dead.tot[,2].

Settings that may need to change in later use of the function should appear as default settings for parameters.
Use lists, where this seems appropriate, to group together parameters that belong together conceptually.

Where appropriate, provide a demonstration mode for functions. Such a mode will print out summary
information on the data and/or on the results of manipulations prior to analysis, with appropriate labelling. The
code needed to implement this feature has the side-effect of showing by example what the function does, and
may be useful for debugging.

Break functions up into a small number of sub-functions or “primitives”. Re-use existing functions wherever
possible. Write any new “primitives” so that they can be re-used. This helps ensure that functions contain well-
tested and well-understood components. Watch the r-help electronic mail list (section 13.3) for useful functions
for routine tasks.

Wherever possible, give parameters sensible defaults. Often a good strategy is to use as defaults parameters that
will serve for a demonstration run of the function.

NULL is a useful default where the parameter mostly is not required, but where the parameter if it appears may
be any one of several types of data structure. The test if(!is.null())if(!is.null())if(!is.null())if(!is.null()) then determines whether one needs
to investigate that parameter further.

Structure computations so that it is easy to retrace them. For this reason substantial chunks of code should be
incorporated into functions sooner rather than later.

Structure code to avoid multiple entry of information.

81

9.3 Functions as aids to Data Management
Where data, labelling etc must be pulled together from a number of sources, and especially where you may want
to retrace your steps some months later, take the same care over structuring data as over structuring code. Thus
if there is a factorial structure to the data files, choose file names that reflect it. You can then generate the file
names automatically, using paste()paste()paste()paste() to glue the separate portions of the name together.

Lists are a useful mechanism for grouping together all data and labelling information that one may wish to bring
together in a single set of computations. Use as the name of the list a unique and meaningful identification code.
Consider whether you should include objects as list items, or whether identification by name is preferable. Bear
in mind, also, the use of switch()switch()switch()switch(), with the identification code used to determine what switch()switch()switch()switch() should
pick out, to pull out specific information and data that is required for a particular run.

Concentrate in one function the task of pulling together data and labelling information, perhaps with some
subsequent manipulation, from a number of separate files. This structures the code, and makes the function a
source of documentation for the data.

Use user-defined data frame attributes to document your data. For example, given the data frame elasticelasticelasticelastic
containing the amount of stretch and resulting distance of movement of a rubber band, one might specify

attributes(elasticband)$title <attributes(elasticband)$title <attributes(elasticband)$title <attributes(elasticband)$title <----

 “Extent of stretch of band, and Resulting Distance” “Extent of stretch of band, and Resulting Distance” “Extent of stretch of band, and Resulting Distance” “Extent of stretch of band, and Resulting Distance”

9.3.1 Graphs
Use graphs freely to shed light both on computations and on data. One of R’s big pluses is its tight integration of
computation and graphics.

9.4 A Simulation Example
We would like to know how well such a student might do by random guessing, on a multiple choice test
consisting of 100 questions each with five alternatives. We can get an idea by using simulation. Each question
corresponds to an independent Bernoulli trial with probability of success equal to 0.2. We can simulate the
correctness of the student for each question by generating an independent uniform random number. If this
number is less than .2, we say that the student guessed correctly; otherwise, we say that the student guessed
incorrectly.

This will work, because the probability that a uniform random variable is less than .2 is exactly .2, while the
probability that a uniform random variable exceeds .2 is exactly .8, which is the same as the probability that the
student guesses incorrectly. Thus, the uniform random number generator is simulating the student. R can do this
as follows:

guesses <guesses <guesses <guesses <---- runif(100) runif(100) runif(100) runif(100)

correct.answers <correct.answers <correct.answers <correct.answers <---- 1*(guesses < .2) 1*(guesses < .2) 1*(guesses < .2) 1*(guesses < .2)

correct.answerscorrect.answerscorrect.answerscorrect.answers

The multiplication by 1 causes (guesses<.2)(guesses<.2)(guesses<.2)(guesses<.2), which is calculated as TRUETRUETRUETRUE or FALSEFALSEFALSEFALSE, to be coerced to 1
(TRUETRUETRUETRUE) or 0 (FALSEFALSEFALSEFALSE). The vector corrcorrcorrcorrect.answersect.answersect.answersect.answers thus contains the results of the student's guesses. A 1
is recorded each time the student correctly guesses the answer, while a 0 is recorded each time the student is
wrong.

One can thus write an R function that simulates a student guessing at a True-False test consisting of some
arbitrary number of questions. We leave this as an exercise.

9.4.1 Poisson Random Numbers
One can think of the Poisson distribution as the distribution of the total for occurrences of rare events. For
example, the occurrence of an accident at an intersection on any one day should be a rare event. The total
number of accidents over the course of a year may well follow a distribution that is close to Poisson. [However
the total number of people injured is unlikely to follow a Poisson distribution. Why?] We can generate Poisson
random numbers using rpois()rpois()rpois()rpois(). It is similar to the rbinomrbinomrbinomrbinom function, but there is only one parameter – the
mean. Suppose for example traffic accidents occur at an intersection with a Poisson distribution that has a mean
rate of 3.7 per year. To simulate the annual number of accidents for a 10-year period, we can specify
rpois(10,3.7)rpois(10,3.7)rpois(10,3.7)rpois(10,3.7).

82

We pursue the Poisson distribution in an exercise below.

9.5 Exercises
1. Use the roundroundroundround function together with runif()runif()runif()runif() to generate 100 random integers between 0 and 99. Now
look up the help for sample()sample()sample()sample(), and use it for the same purpose.

2. Write a function that will take as its arguments a list of response variables, a list of factors, a data frame, and a
function such as mean or median. It will return a data frame in which each value for each combination of factor
levels is summarised in a single statistic, for example the mean or the median.

3. The supplied data frame milkmilkmilkmilk has columns fourfourfourfour and oneoneoneone. Seventeen people rated the sweetness of each of
two samples of a milk product on a continuous scale from 1 to 7, one sample with four units of additive and the
other with one unit of additive. Here is a function that plots, for each patient, the fourfourfourfour result against the oneoneoneone
result, but insisting on the same range for the x and y axes.

plot.one <plot.one <plot.one <plot.one <---- function() function() function() function()

{{{{

 xyrange < xyrange < xyrange < xyrange <---- range(milk) # Calculates the range of all values range(milk) # Calculates the range of all values range(milk) # Calculates the range of all values range(milk) # Calculates the range of all values

 # in the data frame # in the data frame # in the data frame # in the data frame

 par(pin=c(6.75, 6.75)) # Set plotting par(pin=c(6.75, 6.75)) # Set plotting par(pin=c(6.75, 6.75)) # Set plotting par(pin=c(6.75, 6.75)) # Set plotting area = 6.75 in. by 6.75 in. area = 6.75 in. by 6.75 in. area = 6.75 in. by 6.75 in. area = 6.75 in. by 6.75 in.

 plot(four, one, data=milk, xlim=xyrange, ylim=xyrange, pch=16) plot(four, one, data=milk, xlim=xyrange, ylim=xyrange, pch=16) plot(four, one, data=milk, xlim=xyrange, ylim=xyrange, pch=16) plot(four, one, data=milk, xlim=xyrange, ylim=xyrange, pch=16)

 abline(0,1) # Line where four = one abline(0,1) # Line where four = one abline(0,1) # Line where four = one abline(0,1) # Line where four = one

}}}}

Rewrite this function so that, given the name of a data frame and of any two of its columns, it will plot the
second named column against the first named column, showing also the line y=x.

4. Write a function that prints, with their row and column labels, only those elements of a correlation matrix for
which abs(correlation) >= 0.9.

5. Write your own wrapper function for one-way analysis of variance that provides a side by side boxplot of the
distribution of values by groups. If no response variable is specified, the function will generate random normal
data (no difference between groups) and provide the analysis of variance and boxplot information for that.

6. Write a function that adds a text string containing documentation information as an attribute to a dataframe.

7. Write a function that computes a moving average of order 2 of the values in a given vector. Apply the above
function to the data (in the data set huronhuronhuronhuron that accompanies these notes) for the levels of Lake Huron. Repeat
for a moving average of order 3.

8. Find a way of computing the moving averages in exercise 3 that does not involve the use of a for loop.

9. Create a function to compute the average, variance and standard deviation of 1000 randomly generated
uniform random numbers, on [0,1]. (Compare your results with the theoretical results: the expected value of a
uniform random variable on [0,1] is 0.5, and the variance of such a random variable is 0.0833.)

10. Write a function that generates 100 independent observations on a uniformly distributed random variable on
the interval [3.7, 5.8]. Find the mean, variance and standard deviation of such a uniform random variable. Now
modify the function so that you can specify an arbitrary interval.

11. Look up the help for the sample()sample()sample()sample() function. Use it to generate 50 random integers between 0 and 99,
sampled without replacement. (This means that we do not allow any number to be sampled a second time.)
Now, generate 50 random integers between 0 and 9, with replacement.

12. Write an R function that simulates a student guessing at a True-False test consisting of 40 questions. Find
the mean and variance of the student's answers. Compare with the theoretical values of .5 and .25.

13. Write an R function that simulates a student guessing at a multiple choice test consisting of 40 questions,
where there is chance of 1 in 5 of getting the right answer to each question. Find the mean and variance of the
student's answers. Compare with the theoretical values of .2 and .16.

14. Write an R function that simulates the number of working light bulbs out of 500, where each bulb has a
probability .99 of working. Using simulation, estimate the expected value and variance of the random variable
X, which is 1 if the light bulb works and 0 if the light bulb does not work. What are the theoretical values?

83

15. Write a function that does an arbitrary number nnnn of repeated simulations of the number of accidents in a
year, plotting the result in a suitable way. Assume that the number of accidents in a year follows a Poisson
distribution. Run the function assuming an average rate of 2.8 accidents per year.

16. Write a function that simulates the repeated calculation of the coefficient of variation (= the ratio of the mean
to the standard deviation), for independent random samples from a normal distribution.

17. Write a function that, for any sample, calculates the median of the absolute values of the deviations from the
sample median.

*18. Generate random samples from normal, exponential, t (2 d. f.), and t (1 d. f.), thus:

a) xn<xn<xn<xn<----rnorm(100)rnorm(100)rnorm(100)rnorm(100)

b) xe<xe<xe<xe<----rexp(100)rexp(100)rexp(100)rexp(100)

c) xt2<xt2<xt2<xt2<----rt(100, df=2)rt(100, df=2)rt(100, df=2)rt(100, df=2)

d) xt2<xt2<xt2<xt2<----rt(100, df=1rt(100, df=1rt(100, df=1rt(100, df=1)

Apply the function from exercise 17 to each sample. Compare with the standard deviation in each case.

*19. The vector xxxx consists of the frequencies
 5, 3, 1, 4, 65, 3, 1, 4, 65, 3, 1, 4, 65, 3, 1, 4, 6
The first element is the number of occurrences of level 1, the second is the number of occurrences of level 2, and
so on. Write a function that takes any such vector x as its input, and outputs the vector of factor levels, here 1 1 1 1 1 1 1 1
1 1 1 2 2 2 3 . . .1 1 1 2 2 2 3 . . .1 1 1 2 2 2 3 . . .1 1 1 2 2 2 3 . . .
[You’ll need the information that is provided by cumsum(x). Form a vector in which 1’s appear whenever the
factor level is incremented, and is otherwise zero. . . .]

*20. Write a function that calculates the minimum of a quadratic, and the value of the function at the minimum.

*21. A “between times” correlation matrix, has been calculated from data on heights of trees at times 1, 2, 3, 4, .
. . Write a function that calculates the average of the correlations for any given lag.

*22. Given data on trees at times 1, 2, 3, 4, . . ., write a function that calculates the matrix of “average” relative
growth rates over the several intervals. Apply your function to the data frame ratsratsratsrats that accompanies these
notes.

[The relative growth rate may be defined as
dt

wd
dt
dw

w
log1 = . Hence its is reasonable to calculate the

average over the interval from t1 to t2 as
12

12 loglog
tt

ww
−
−

.]

84

85

*10. GLM, and General Non-linear Models
GLM models are Generalized Linear Models. They extend the multiple regression model. The GAM
(Generalized Additive Model) model is a further extension.

10.1 A Taxonomy of Extensions to the Linear Model
R allows a variety of extensions to the multiple linear regression model. In this chapter we describe the
alternative functional forms.

The basic model formulation41 is:

 Observed value = Model Prediction + Statistical Error
Often it is assumed that the statistical error values (values of ε in the discussion below) are independently and
identically distributed as Normal. Generalized Linear Models, and the other extensions we describe, allow a
variety of non-normal distributions. In the discussion of this section, our focus is on the form of the model
prediction, and we leave until later sections the discussion of different possibilities for the “error” distribution.

Multiple regression model

 y = α + β1x1 + β2x2 + . . . +βpxp + ε

Use lm()lm()lm()lm() to fit multiple regression models. The various other models we describe are, in essence,
generalizations of this model.

Generalized Linear Model (e.g. logit model)

y = g(a + b1x1) + ε

Here g(.) is selected from one of a small number of options.

For logit models, επ +=y , where

 11)
1

log(xba +=
−π
π

Here π is an expected proportion, and

 log(odds). is)logit()
1

log(π
π

π =
−

We can turn this model around, and write

 εε +
++

+=++=
)exp(1

)exp()(
11

11
11 xba

xbaxbagy

Here g(.) undoes the logit transformation.

We can add more explanatory variables: a + b1x1 + . . . + bpxp.

Use glm()glm()glm()glm() to fit generalized linear models.

Additive Model

εφφφ ++++=)(....)()(2211 pp xxxy

41 This may be generalized in various ways. Models which have this form may be nested within other models
which have this basic form. Thus there may be `predictions’ and `errors’ at different levels within the total
model.

86

Additive models are a generalization of lmlmlmlm models. In 1 dimension

 εφ +=)(11 xy

Some of)(),...,(),(222111 ppp xzxzxz φφφ === may be smoothing functions, while others may be

the usual linear model terms. The constant term gets absorbed into one or more of the φ s.

Generalized Additive Model

εφφφ ++++=))(....)()((2211 pp xxxgy

Generalized Additive Models are a generalisation of Generalized Linear Models. For example, g(.) may be the
function that undoes the logit transformation, as in a logistic regression model.

Some of)(),...,(),(222111 ppp xzxzxz φφφ === may be smoothing functions, while others may be
the usual linear model terms.

We can transform to get the model

 ε+++=)...(21 pzzzgy

Notice that even if p = 1, we may still want to retain both 1φ (.) and g(.), i.e.

 εφ +=))((11 xgy

The reason is that g(.) is a specific function, such as the inverse of the logit function. The function (.)1φ does
any further necessary smoothing, in case g(.) is not quite the right transformation. One wants g(.) to do as much
of possible of the task of transformation, with (.)1φ giving the transformation any necessary additional
flourishes.

At the time of writing, R has no specific provision for generalized additive models. The fitting of spline (bs()bs()bs()bs()
or ns()ns()ns()ns()) terms in a linear model or a generalized linear model will often do what is needed.

10.2 Logistic Regression
We will use a logistic regression model as a starting point for discussing Generalized Linear Models.

With proportions that range from less than 0.1 to 0.99, it is not reasonable to expect that the expected proportion
will be a linear function of x. Some such transformation (`link’ function) as the logit is required. A good way to
think about logit models is that they work on a log(odds) scale. If p is a probability (e.g. that horse A will win
the race), then the corresponding odds are p/(1-p), and

 log(odds) = log(
p

p
−1

) = log(p) -log(1-p)

The linear model predicts, not p, but log(
p

p
−1

). Fig. 24 shows the logit transformation.

87

0.0 0.2 0.4 0.6 0.8 1.0

-6
-4

-2
0

2
4

6

Proportion

lo
gi

t(P
ro

po
rti

on
),

i.
e.

 lo
g(

O
dd

s)

0.
00

1
0.

1
0.

75
0.

99

Figure 24: The logit or log(odds) transformation. Shown here
is a plot of log(odds) versus proportion. Notice how the range is
stretched out at both ends.

The logit or log(odds) function turns expected proportions into values that may range from -∞ to +∞. It is not
satisfactory to use a linear model to predict proportions. The values from the linear model may well lie outside
the range from 0 to 1. It is however in order to use a linear model to predict logit(proportion). The logit
function is an example of a link function.

There are various other link functions that we can use with proportions. One of the commonest is the
complementary log-log function.

10.2.1 Anesthetic Depth Example
Thirty patients were given an anesthetic agent that was maintained at a pre-determined [alveolar] concentration
for 15 minutes before making an incision42. It was then noted whether the patient moved, i.e. jerked or twisted.
The interest is in estimating how the probability of jerking or twisting varies with increasing concentration of the
anesthetic agent.

The response is best taken as nomove, for reasons that will emerge later. There is a small number of
concentrations; so we begin by tabulating proportion that have the nomove outcome against concentration.

 Alveolar Concentration

 Nomove 0.8 1 1.2 1.4 1.6 2.5

 0 6 4 2 2 0 0

 1 1 1 4 4 4 2

 Total 7 5 6 6 4 2

42 I am grateful to John Erickson (Anesthesia and Critical Care, University of Chicago) and to Alan Welsh
(Centre for Mathematics & its Applications, Australian National University) for allowing me use of these data.

88

Table 1: Patients moving (0) and not moving (1), for each of
six different alveolar concentrations.

Fig. 25 then displays a plot of these proportions.

1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Concentration

Pr
op

or
tio

n

5

6 6

4 2

Figure 25: Plot, versus concentration, of proportion of patients
not moving. The horizontal line is the estimate of the proportion
of moves one would expect if the concentration had no effect.

We fit two models, the logit model and the complementary log-log model. We can fit the models either directly
to the 0/1 data, or to the proportions in Table 1. To understand the output, you need to know about “deviances”.
A deviance has a role very similar to a sum of squares in regression. Thus we have:

 Regression Logistic regression

 degrees of freedom degrees of freedom

 sum of squares deviance

 mean sum of squares
(divide by d.f.)

mean deviance
(divide by d.f.)

 We prefer models with a small
mean residual sum of squares.

We prefer models with a small
mean deviance.

If individuals respond independently, with the same probability, then we have Bernoulli trials. Justification for
assuming the same probability will arise from the way in which individuals are sampled. While individuals will
certainly be different in their response the notion is that, each time a new individual is taken, they are drawn at
random from some larger population. Here is the R code:

> anaes.logit <> anaes.logit <> anaes.logit <> anaes.logit <---- glm(nomove ~ conc, family = binomial(link = logit), glm(nomove ~ conc, family = binomial(link = logit), glm(nomove ~ conc, family = binomial(link = logit), glm(nomove ~ conc, family = binomial(link = logit),

+ data = anesthetic)+ data = anesthetic)+ data = anesthetic)+ data = anesthetic)

The output summary is:

89

> summary(anaes.logit)> summary(anaes.logit)> summary(anaes.logit)> summary(anaes.logit)

Call: glm(formula = nomove ~ conc, family = binomial(link = logit), Call: glm(formula = nomove ~ conc, family = binomial(link = logit), Call: glm(formula = nomove ~ conc, family = binomial(link = logit), Call: glm(formula = nomove ~ conc, family = binomial(link = logit),

 data = anesthetic) data = anesthetic) data = anesthetic) data = anesthetic)

Deviance Residuals:Deviance Residuals:Deviance Residuals:Deviance Residuals:

 Min 1Q Median 3Q Max Min 1Q Median 3Q Max Min 1Q Median 3Q Max Min 1Q Median 3Q Max

 ----1.77 1.77 1.77 1.77 ----0.744 0.0341 0.687 2.070.744 0.0341 0.687 2.070.744 0.0341 0.687 2.070.744 0.0341 0.687 2.07

Coefficients:Coefficients:Coefficients:Coefficients:

 Value St Value St Value St Value Std. Error t value d. Error t value d. Error t value d. Error t value

(Intercept) (Intercept) (Intercept) (Intercept) ----6.47 2.42 6.47 2.42 6.47 2.42 6.47 2.42 ----2.682.682.682.68

 conc 5.57 2.04 2.72 conc 5.57 2.04 2.72 conc 5.57 2.04 2.72 conc 5.57 2.04 2.72

(Dispersion Parameter for Binomial family taken to be 1)(Dispersion Parameter for Binomial family taken to be 1)(Dispersion Parameter for Binomial family taken to be 1)(Dispersion Parameter for Binomial family taken to be 1)

 Null Deviance: 41.5 on 29 degrees of freedom Null Deviance: 41.5 on 29 degrees of freedom Null Deviance: 41.5 on 29 degrees of freedom Null Deviance: 41.5 on 29 degrees of freedom

Residual Deviance: 27.8 on 28 degrees of freedomResidual Deviance: 27.8 on 28 degrees of freedomResidual Deviance: 27.8 on 28 degrees of freedomResidual Deviance: 27.8 on 28 degrees of freedom

NumberNumberNumberNumber of Fisher Scoring Iterations: 5 of Fisher Scoring Iterations: 5 of Fisher Scoring Iterations: 5 of Fisher Scoring Iterations: 5

Correlation of Coefficients:Correlation of Coefficients:Correlation of Coefficients:Correlation of Coefficients:

 (Intercept) (Intercept) (Intercept) (Intercept)

conc conc conc conc ----0.9810.9810.9810.981

Fig. 26 is a graphical summary of the results:

Concentration

Pr
op

or
tio

n

0.0 0.5 1.0 1.5 2.0 2.5

0.
01

0.
1

0.
4

0.
8

0.
99

Figure 26: Plot, versus concentration, of log(odds) [= logit(proportion)]
of patients not moving. The line is the estimate of the proportion of
moves, based on the fitted logit model.

With such a small sample size it is impossible to do much that is useful to check the adequacy of the model.

You can also try plot(anaes.logit)plot(anaes.logit)plot(anaes.logit)plot(anaes.logit) and plot.gam(anaes.logit)plot.gam(anaes.logit)plot.gam(anaes.logit)plot.gam(anaes.logit).

90

10.3 glm models (Generalized Linear Regression Modelling)
In the above we had

anaes.logit <anaes.logit <anaes.logit <anaes.logit <---- glm(nomove ~ conc, family = binomial(link = logit), glm(nomove ~ conc, family = binomial(link = logit), glm(nomove ~ conc, family = binomial(link = logit), glm(nomove ~ conc, family = binomial(link = logit),

 data=anesthetic) data=anesthetic) data=anesthetic) data=anesthetic)

The familyfamilyfamilyfamily parameter specifies the distribution for the dependent variable. There is an optional argument that
allows us to specify the link function. Below we give further examples.

10.3.2 Data in the form of counts
Data that are in the form of counts can often be analysed quite effectively assuming the poissonpoissonpoissonpoisson family. The
link that is commonly used here is loglogloglog. The loglogloglog link transforms from positive numbers to numbers in the
range -∞ to +∞ that a linear model may predict.

10.3.3 The gaussian family
If no family is specified, then the family is taken to be gaussiangaussiangaussiangaussian. The default link is then the identity,identity,identity,identity, as
for an lmlmlmlm model. This way of formulating an lmlmlmlm type model does however have the advantage that one is not
restricted to the identity link.

data(airquality)data(airquality)data(airquality)data(airquality)

air.glm<air.glm<air.glm<air.glm<----glm(Ozone^(1/3) ~ Solar.R + Windglm(Ozone^(1/3) ~ Solar.R + Windglm(Ozone^(1/3) ~ Solar.R + Windglm(Ozone^(1/3) ~ Solar.R + Wind + Temp, data = airquality) + Temp, data = airquality) + Temp, data = airquality) + Temp, data = airquality)

 # Assumes gaussian family, i.e. normal errors model # Assumes gaussian family, i.e. normal errors model # Assumes gaussian family, i.e. normal errors model # Assumes gaussian family, i.e. normal errors model

summary(air.glm)summary(air.glm)summary(air.glm)summary(air.glm)

10.4 Models that Include Smooth Spline Terms
These make it possible to fit spline and other smooth transformations of explanatory variables. One can request
a `smooth’ b-spline or n-spline transformation of a column of the X matrix. In place of xxxx one specifies bs(x)bs(x)bs(x)bs(x)or
ns(x)ns(x)ns(x)ns(x). One can control the smoothness of the curve, but often the default works quite well. You need to
install the splines library. R does not at present have a facility for plots that show the contribution of each term
to the model.

10.4.1 Dewpoint Data
The data set dewpointdewpointdewpointdewpoint43 has columns mintempmintempmintempmintemp, maxtempmaxtempmaxtempmaxtemp and dewpointdewpointdewpointdewpoint. The dewpoint values are
averages, for each combination of mintemp and maxtemp, of monthly data from a number of different times and
locations. We fit the model:

 dewpoint dewpoint dewpoint dewpoint = mean of dewpointdewpointdewpointdewpoint + smooth(mintempmintempmintempmintemp) + smooth(maxtempmaxtempmaxtempmaxtemp)

Taking out the mean is a computational convenience. Also it provides a more helpful form of output. Here are
details of the calculations:

dewpoint.lm <dewpoint.lm <dewpoint.lm <dewpoint.lm <---- lm(dewpoint ~ bs(mintemp) + bs(maxtemp), lm(dewpoint ~ bs(mintemp) + bs(maxtemp), lm(dewpoint ~ bs(mintemp) + bs(maxtemp), lm(dewpoint ~ bs(mintemp) + bs(maxtemp),

 data = dewpoint) data = dewpoint) data = dewpoint) data = dewpoint)

options(digits=3)options(digits=3)options(digits=3)options(digits=3)

summary(dewpoint.lm)summary(dewpoint.lm)summary(dewpoint.lm)summary(dewpoint.lm)

10.5 Non-linear Models
You can use nls()nls()nls()nls() (non-linear least squares) to obtain a least squares fit to a non-linear function.

10.6 Model Summaries
Type in

43 I am grateful to Dr Edward Linacre, Visiting Fellow, Geography Department, Australian National University,
for making these data available.

91

methods(summary)methods(summary)methods(summary)methods(summary)

to get a list of the summary methods that are available. You may want to mix and match, e.g. summary.lm()summary.lm()summary.lm()summary.lm()
on an aov or glm object. The output may not be what you might expect. So be careful!

10.7 Further Elaborations
Generalised Linear Models were developed in the 1970s. They unified a huge range of diverse methodology.
They have now become a stock-in-trade of statistical analysts. Their practical implementation built on the
powerful computational abilities that, by the 1970s, had been developed for handling linear model calculations.

Practical data analysis demands further elaborations. An important elaboration is to the incorporation of more
than one term in the error structure. The R nlmenlmenlmenlme library implements such extensions, both for linear models and
for a wide class of nonlinear models.

Each such new development builds on the theoretical and computational tools that have arisen from earlier
developments. Exciting new analysis tools will continue to appear for a long time yet. This is fortunate. Most
professional users of R will regularly encounter data where the methodology that the data ideally demands is not
yet available.

10.8 Exercises
1. Fit a Poisson regression model to the data in the data frame mothsmothsmothsmoths that Accompanies these notes. Allow
different intercepts for different habitats. Use log(meters) as a covariate.

10.9 References
Dobson, A. J. 1983. An Introduction to Statistical Modelling. Chapman and Hall, London.

Hastie, T. J. and Tibshirani, R. J. 1990. Generalized Additive Models. Chapman and Hall, London.

McCullagh, P. and Nelder, J. A., 2nd edn., 1989. Generalized Linear Models. Chapman and Hall.

Venables, W. N. and Ripley, B. D., 2nd edn 1997. Modern Applied Statistics with S-Plus. Springer, New York.

92

93

*11. Multi-level Models, Time Series and Survival Analysis
Repeated measures models are a special case of multi-level models.

11.1 Multi-Level Models, Including Repeated Measures Models
Models have both a fixed effects structure and an error structure. For example, in an inter-laboratory comparison
there may be variation between laboratories, between observers within laboratories, and between multiple
determinations made by the same observer on different samples. If we treat laboratories and observers as
random, the only fixed effect is the mean.

The functions lme()lme()lme()lme() and nlme()nlme()nlme()nlme(), from the Pinheiro and Bates library, handle models in which a repeated
measures error structure is superimposed on a linear (lmelmelmelme) or non-linear (nlmenlmenlmenlme) model. Version 3 of lme is
broadly comparable to Proc Mixed in the widely used SAS statistical package. The function lmelmelmelme has associated
with it highly useful abilities for diagnostic checking and for various insightful plots.

There is a strong link between a wide class of repeated measures models and time series models. In the time
series context there is usually just one realisation of the series, which may however be observed at a large
number of time points. In the repeated measures context there may be a large number of realisations of a series
that is typically quite short.

11.1.1 The Kiwifruit Shading Data, Again
Refer back to section 5.8.2 for details of these data. The fixed effects are blockblockblockblock and treatment (shadeshadeshadeshade). The
random effects are blockblockblockblock (though making block a random effect is optional), plotplotplotplot within blockblockblockblock, and units
within each block/plot combination. Here is the analysis:

> library(nlme)> library(nlme)> library(nlme)> library(nlme)

Loading required package: nls Loading required package: nls Loading required package: nls Loading required package: nls

> kiwishade$plot<> kiwishade$plot<> kiwishade$plot<> kiwishade$plot<----factor(paste(kiwishade$block, kiwishade$shade, factor(paste(kiwishade$block, kiwishade$shade, factor(paste(kiwishade$block, kiwishade$shade, factor(paste(kiwishade$block, kiwishade$shade,

 sep=".")) sep=".")) sep=".")) sep="."))

> kiwishade.lme<> kiwishade.lme<> kiwishade.lme<> kiwishade.lme<----lme(yield~shade,random=~1|block/plot, data=kiwishade)lme(yield~shade,random=~1|block/plot, data=kiwishade)lme(yield~shade,random=~1|block/plot, data=kiwishade)lme(yield~shade,random=~1|block/plot, data=kiwishade)

> summary(kiwishade.lme)> summary(kiwishade.lme)> summary(kiwishade.lme)> summary(kiwishade.lme)

LineaLineaLineaLinear mixedr mixedr mixedr mixed----effects model fit by REMLeffects model fit by REMLeffects model fit by REMLeffects model fit by REML

 Data: kiwishade Data: kiwishade Data: kiwishade Data: kiwishade

 AIC BIC logLik AIC BIC logLik AIC BIC logLik AIC BIC logLik

 265.9663 278.4556 265.9663 278.4556 265.9663 278.4556 265.9663 278.4556 ----125.9831125.9831125.9831125.9831

Random effects:Random effects:Random effects:Random effects:

 Formula: ~1 | block Formula: ~1 | block Formula: ~1 | block Formula: ~1 | block

 (Intercept) (Intercept) (Intercept) (Intercept)

StdDev: 2.019373StdDev: 2.019373StdDev: 2.019373StdDev: 2.019373

 Formula: ~1 | plot %in% block Formula: ~1 | plot %in% block Formula: ~1 | plot %in% block Formula: ~1 | plot %in% block

 (Intercept) Residual (Intercept) Residual (Intercept) Residual (Intercept) Residual

StdDeStdDeStdDeStdDev: 1.478639 3.490378v: 1.478639 3.490378v: 1.478639 3.490378v: 1.478639 3.490378

Fixed effects: yield ~ shade Fixed effects: yield ~ shade Fixed effects: yield ~ shade Fixed effects: yield ~ shade

 Value Std.Error DF t Value Std.Error DF t Value Std.Error DF t Value Std.Error DF t----value pvalue pvalue pvalue p----valuevaluevaluevalue

(Intercept) 100.20250 1.761621 36 56.88086 <.0001(Intercept) 100.20250 1.761621 36 56.88086 <.0001(Intercept) 100.20250 1.761621 36 56.88086 <.0001(Intercept) 100.20250 1.761621 36 56.88086 <.0001

shadeAug2Dec 3.03083 1.867629 6 1.62282 0.1558shadeAug2Dec 3.03083 1.867629 6 1.62282 0.1558shadeAug2Dec 3.03083 1.867629 6 1.62282 0.1558shadeAug2Dec 3.03083 1.867629 6 1.62282 0.1558

shadeDec2Feb shadeDec2Feb shadeDec2Feb shadeDec2Feb ----10.28167 1.867629 6 10.28167 1.867629 6 10.28167 1.867629 6 10.28167 1.867629 6 ----5.5055.5055.5055.50520 0.001520 0.001520 0.001520 0.0015

shadeFeb2May shadeFeb2May shadeFeb2May shadeFeb2May ----7.42833 1.867629 6 7.42833 1.867629 6 7.42833 1.867629 6 7.42833 1.867629 6 ----3.97741 0.00733.97741 0.00733.97741 0.00733.97741 0.0073

 Correlation: Correlation: Correlation: Correlation:

94

 (Intr) shdA2D shdD2F (Intr) shdA2D shdD2F (Intr) shdA2D shdD2F (Intr) shdA2D shdD2F

shadeAug2Dec shadeAug2Dec shadeAug2Dec shadeAug2Dec ----0.53 0.53 0.53 0.53

shadeDec2Feb shadeDec2Feb shadeDec2Feb shadeDec2Feb ----0.53 0.50 0.53 0.50 0.53 0.50 0.53 0.50

shadeFeb2May shadeFeb2May shadeFeb2May shadeFeb2May ----0.53 0.50 0.50 0.53 0.50 0.50 0.53 0.50 0.50 0.53 0.50 0.50

Standardized WithinStandardized WithinStandardized WithinStandardized Within----Group Residuals:Group Residuals:Group Residuals:Group Residuals:

 Min Q1 Med Q3 Max Min Q1 Med Q3 Max Min Q1 Med Q3 Max Min Q1 Med Q3 Max

----2.4153887 2.4153887 2.4153887 2.4153887 ----0.5981415 0.5981415 0.5981415 0.5981415 ----0.0689948 0.7804597 1.5890938 0.0689948 0.7804597 1.5890938 0.0689948 0.7804597 1.5890938 0.0689948 0.7804597 1.5890938

Number of Observations: 48Number of Observations: 48Number of Observations: 48Number of Observations: 48

Number of Groups: Number of Groups: Number of Groups: Number of Groups:

 block plot %in% block block plot %in% block block plot %in% block block plot %in% block

 3 12 3 12 3 12 3 12

> anova(kiwishade.lme)> anova(kiwishade.lme)> anova(kiwishade.lme)> anova(kiwishade.lme)

 numDF denDF FnumDF denDF FnumDF denDF FnumDF denDF F----value pvalue pvalue pvalue p----valuevaluevaluevalue

(Intercept) 1 36 5190.552 <.0001(Intercept) 1 36 5190.552 <.0001(Intercept) 1 36 5190.552 <.0001(Intercept) 1 36 5190.552 <.0001

shade 3 6 22.211 0.0012shade 3 6 22.211 0.0012shade 3 6 22.211 0.0012shade 3 6 22.211 0.0012

This was a balanced design, which is why section 5.8.2 could use aov()aov()aov()aov() for an analysis. We can get an output
summary that is helpful for showing how the error mean squares match up with standard deviation information
given above thus:

> intervals(kiwishade.lme)> intervals(kiwishade.lme)> intervals(kiwishade.lme)> intervals(kiwishade.lme)

Approximate 95% confidence intervalsApproximate 95% confidence intervalsApproximate 95% confidence intervalsApproximate 95% confidence intervals

 Fixed effects: Fixed effects: Fixed effects: Fixed effects:

 lower est. upper lower est. upper lower est. upper lower est. upper

(Intercept) 96.62977 100.202500 103.(Intercept) 96.62977 100.202500 103.(Intercept) 96.62977 100.202500 103.(Intercept) 96.62977 100.202500 103.775232775232775232775232

shadeAug2Dec shadeAug2Dec shadeAug2Dec shadeAug2Dec ----1.53909 3.030833 7.6007571.53909 3.030833 7.6007571.53909 3.030833 7.6007571.53909 3.030833 7.600757

shadeDec2Feb shadeDec2Feb shadeDec2Feb shadeDec2Feb ----14.85159 14.85159 14.85159 14.85159 ----10.281667 10.281667 10.281667 10.281667 ----5.7117435.7117435.7117435.711743

shadeFeb2May shadeFeb2May shadeFeb2May shadeFeb2May ----11.99826 11.99826 11.99826 11.99826 ----7.428333 7.428333 7.428333 7.428333 ----2.8584102.8584102.8584102.858410

 Random Effects: Random Effects: Random Effects: Random Effects:

 Level: block Level: block Level: block Level: block

 lower est. upper lower est. upper lower est. upper lower est. upper

sd((Intercept)) 0.5473014 2.019373 7.sd((Intercept)) 0.5473014 2.019373 7.sd((Intercept)) 0.5473014 2.019373 7.sd((Intercept)) 0.5473014 2.019373 7.45086450864508645086

 Level: plot Level: plot Level: plot Level: plot

 lower est. upper lower est. upper lower est. upper lower est. upper

sd((Intercept)) 0.3702555 1.478639 5.905037sd((Intercept)) 0.3702555 1.478639 5.905037sd((Intercept)) 0.3702555 1.478639 5.905037sd((Intercept)) 0.3702555 1.478639 5.905037

 Within Within Within Within----group standard error:group standard error:group standard error:group standard error:

 lower est. upper lower est. upper lower est. upper lower est. upper

2.770678 3.490378 4.397024 2.770678 3.490378 4.397024 2.770678 3.490378 4.397024 2.770678 3.490378 4.397024

We are interested in the three estimates. By squaring the standard deviations and converting them to variances
we get the information in the following table:

 Variance component Notes

block 2.0192 = 4.076 Three blocks

plot 1.4792= 2.186 4 plots per block

residual (within group) 3.4902=12.180 4 vines (subplots) per plot

95

The above allows us to put together the information for an analysis of variance table. We have:

 Variance
component

Mean square for anova table d.f.

block 4.076 12.180 + 4 × 2.186 + 16 × 4.076

= 86.14

 2

(3-1)

plot 2.186 12.180 + 4 × 2.186

= 20.92

 6

(3-1) ×(2-1)

residual (within group) 12.180 12.18 3×4×(4-1)

Now find see where these same pieces of information appeared in the analysis of variance table of section 5.8.2:
> kiwishade.aov<> kiwishade.aov<> kiwishade.aov<> kiwishade.aov<----aov(yield~block+shade+Error(block:shade),data=kiaov(yield~block+shade+Error(block:shade),data=kiaov(yield~block+shade+Error(block:shade),data=kiaov(yield~block+shade+Error(block:shade),data=kiwishade)wishade)wishade)wishade)

> summary(kiwishade.aov)> summary(kiwishade.aov)> summary(kiwishade.aov)> summary(kiwishade.aov)

Error: block:shadeError: block:shadeError: block:shadeError: block:shade

 Df Sum Sq Mean Sq F value Pr(>F) Df Sum Sq Mean Sq F value Pr(>F) Df Sum Sq Mean Sq F value Pr(>F) Df Sum Sq Mean Sq F value Pr(>F)

block 2 172.35 86.17 4.1176 0.074879block 2 172.35 86.17 4.1176 0.074879block 2 172.35 86.17 4.1176 0.074879block 2 172.35 86.17 4.1176 0.074879

shade 3 1394.51 464.84 22.2112 0.001194shade 3 1394.51 464.84 22.2112 0.001194shade 3 1394.51 464.84 22.2112 0.001194shade 3 1394.51 464.84 22.2112 0.001194

Residuals 6 125.57 20.93 Residuals 6 125.57 20.93 Residuals 6 125.57 20.93 Residuals 6 125.57 20.93

Error: WithinError: WithinError: WithinError: Within

 Df Sum Sq Mean Sq F value Pr(>F) Df Sum Sq Mean Sq F value Pr(>F) Df Sum Sq Mean Sq F value Pr(>F) Df Sum Sq Mean Sq F value Pr(>F)

Residuals 36 438.58 12.18Residuals 36 438.58 12.18Residuals 36 438.58 12.18Residuals 36 438.58 12.18

11.1.2 The Tinting of Car Windows
In section 4.1 we encountered data from an experiment that aimed to model the effects of the tinting of car
windows on visual performance44. The authors are mainly interested in effects on side window vision, and
hence in visual recognition tasks that would be performed when looking through side windows.

Data are in the data frame tintingtintingtintingtinting. In this data frame, csoacsoacsoacsoa (critical stimulus onset asynchrony, i.e. the time
in milliseconds required to recognise an alphanumeric target), itititit (inspection time, i.e. the time required for a
simple discrimination task) and ageageageage are variables, while tinttinttinttint (3 levels) and targettargettargettarget (2 levels) are ordered
factors. The variable sexsexsexsex is coded 1 for males and 2 for females, while the variable agegpagegpagegpagegp is coded 1 for
young people (all in their early 20s) and 2 for older participants (all in the early 70s).

We have two levels of variation – within individuals (who were each tested on each combination of tinttinttinttint and
targettargettargettarget), and between individuals. So we need to specify idididid (identifying the individual) as a random effect.
Plots such as we examined in section 4.1 make it clear that, to get variances that are approximately
homogeneous, we need to work with log(csoacsoacsoacsoa) and log(itititit). Here we examine the analysis for log(itititit). We
start with a model that is likely to be more complex than we need (it has all possible interactions):

itstar.lme<itstar.lme<itstar.lme<itstar.lme<----lme(log(it)~tint*target*agegp*sex,lme(log(it)~tint*target*agegp*sex,lme(log(it)~tint*target*agegp*sex,lme(log(it)~tint*target*agegp*sex,

 random=~1|id, data=tin random=~1|id, data=tin random=~1|id, data=tin random=~1|id, data=tinting,method="ML")ting,method="ML")ting,method="ML")ting,method="ML")

A reasonable guess is that first order interactions may be all we need, i.e.
it2.lme<it2.lme<it2.lme<it2.lme<----lme(log(it)~(tint+target+agegp+sex)^2,lme(log(it)~(tint+target+agegp+sex)^2,lme(log(it)~(tint+target+agegp+sex)^2,lme(log(it)~(tint+target+agegp+sex)^2,

 random=~1|id, data=tinting,method="ML") random=~1|id, data=tinting,method="ML") random=~1|id, data=tinting,method="ML") random=~1|id, data=tinting,method="ML")

44 Data relate to the paper: Burns, N. R., Nettlebeck, T., White, M. and Willson, J. 1999. Effects of car window
tinting on visual performance: a comparison of elderly and young drivers. Ergonomics 42: 428-443.

96

Finally, there is the very simple model, allowing only for main effects:
it1.lme<it1.lme<it1.lme<it1.lme<----lme(log(it)~(tint+target+agegp+sex),lme(log(it)~(tint+target+agegp+sex),lme(log(it)~(tint+target+agegp+sex),lme(log(it)~(tint+target+agegp+sex),

 random=~1|id, data=tinting,method="ML") random=~1|id, data=tinting,method="ML") random=~1|id, data=tinting,method="ML") random=~1|id, data=tinting,method="ML")

Note that we have fitted all these models by maximum likelihood. This is so that we can do the equivalent of an
analysis of variance comparison. Here is what we get:

> anova(itstar.lme,it2.lme,it1.lme)> anova(itstar.lme,it2.lme,it1.lme)> anova(itstar.lme,it2.lme,it1.lme)> anova(itstar.lme,it2.lme,it1.lme)

 Model df AIC BIC logLik Test L.Ratio p Model df AIC BIC logLik Test L.Ratio p Model df AIC BIC logLik Test L.Ratio p Model df AIC BIC logLik Test L.Ratio p----valuevaluevaluevalue

itstar.lme 1 26 8.146187 91.45036 21.926906 itstar.lme 1 26 8.146187 91.45036 21.926906 itstar.lme 1 26 8.146187 91.45036 21.926906 itstar.lme 1 26 8.146187 91.45036 21.926906

it2.lme 2 17 it2.lme 2 17 it2.lme 2 17 it2.lme 2 17 ----3.742883 50.72523 18.871441 1 vs 2 6.11093 0.3.742883 50.72523 18.871441 1 vs 2 6.11093 0.3.742883 50.72523 18.871441 1 vs 2 6.11093 0.3.742883 50.72523 18.871441 1 vs 2 6.11093 0.7288728872887288

it1.lme 3 8 1.138171 26.77022 7.430915 2 vs 3 22.88105 0.0065it1.lme 3 8 1.138171 26.77022 7.430915 2 vs 3 22.88105 0.0065it1.lme 3 8 1.138171 26.77022 7.430915 2 vs 3 22.88105 0.0065it1.lme 3 8 1.138171 26.77022 7.430915 2 vs 3 22.88105 0.0065

The model that limits attention to first order interactions is adequate. We will need to examine the first order
interactions individually. For this we re-fit the model used for it2.lmeit2.lmeit2.lmeit2.lme, but now with method="REML"method="REML"method="REML"method="REML".

it2.reml<it2.reml<it2.reml<it2.reml<----update(it2.lme,method="REML")update(it2.lme,method="REML")update(it2.lme,method="REML")update(it2.lme,method="REML")

We now examine the estimated effects:
> options(digits=3)> options(digits=3)> options(digits=3)> options(digits=3)

> summary(it2.reml)$tTable> summary(it2.reml)$tTable> summary(it2.reml)$tTable> summary(it2.reml)$tTable

 Value Std.Error DF t Value Std.Error DF t Value Std.Error DF t Value Std.Error DF t----value pvalue pvalue pvalue p----valuevaluevaluevalue

(Intercept) 6.05231 (Intercept) 6.05231 (Intercept) 6.05231 (Intercept) 6.05231 0.7589 145 7.975 4.17e0.7589 145 7.975 4.17e0.7589 145 7.975 4.17e0.7589 145 7.975 4.17e----13131313

tint.L 0.22658 0.0890 145 2.547 1.19etint.L 0.22658 0.0890 145 2.547 1.19etint.L 0.22658 0.0890 145 2.547 1.19etint.L 0.22658 0.0890 145 2.547 1.19e----02020202

tint.Q 0.17126 0.0933 145 1.836 6.84etint.Q 0.17126 0.0933 145 1.836 6.84etint.Q 0.17126 0.0933 145 1.836 6.84etint.Q 0.17126 0.0933 145 1.836 6.84e----02020202

targethicon targethicon targethicon targethicon ----0.24012 0.1010 145 0.24012 0.1010 145 0.24012 0.1010 145 0.24012 0.1010 145 ----2.378 1.87e2.378 1.87e2.378 1.87e2.378 1.87e----02020202

agegp agegp agegp agegp ----1.13449 0.5167 22 1.13449 0.5167 22 1.13449 0.5167 22 1.13449 0.5167 22 ----2.196 32.196 32.196 32.196 3.90e.90e.90e.90e----02020202

sex sex sex sex ----0.74542 0.5167 22 0.74542 0.5167 22 0.74542 0.5167 22 0.74542 0.5167 22 ----1.443 1.63e1.443 1.63e1.443 1.63e1.443 1.63e----01010101

tint.L.targethicon tint.L.targethicon tint.L.targethicon tint.L.targethicon ----0.09193 0.0461 145 0.09193 0.0461 145 0.09193 0.0461 145 0.09193 0.0461 145 ----1.996 4.78e1.996 4.78e1.996 4.78e1.996 4.78e----02020202

tint.Q.targethicon tint.Q.targethicon tint.Q.targethicon tint.Q.targethicon ----0.00722 0.0482 145 0.00722 0.0482 145 0.00722 0.0482 145 0.00722 0.0482 145 ----0.150 8.81e0.150 8.81e0.150 8.81e0.150 8.81e----01010101

tint.L.agegp tint.L.agegp tint.L.agegp tint.L.agegp ----0.13075 0.0492 145 0.13075 0.0492 145 0.13075 0.0492 145 0.13075 0.0492 145 ----2.658 8.74e2.658 8.74e2.658 8.74e2.658 8.74e----03030303

tint.Q.agegptint.Q.agegptint.Q.agegptint.Q.agegp ----0.06972 0.0520 145 0.06972 0.0520 145 0.06972 0.0520 145 0.06972 0.0520 145 ----1.341 1.82e1.341 1.82e1.341 1.82e1.341 1.82e----01010101

tint.L.sex 0.09794 0.0492 145 1.991 4.83etint.L.sex 0.09794 0.0492 145 1.991 4.83etint.L.sex 0.09794 0.0492 145 1.991 4.83etint.L.sex 0.09794 0.0492 145 1.991 4.83e----02020202

tint.Q.sex tint.Q.sex tint.Q.sex tint.Q.sex ----0.00542 0.0520 145 0.00542 0.0520 145 0.00542 0.0520 145 0.00542 0.0520 145 ----0.104 9.17e0.104 9.17e0.104 9.17e0.104 9.17e----01010101

targethicon.agegp 0.13887 0.0584 145 2.376 1.88etargethicon.agegp 0.13887 0.0584 145 2.376 1.88etargethicon.agegp 0.13887 0.0584 145 2.376 1.88etargethicon.agegp 0.13887 0.0584 145 2.376 1.88e----02020202

targethicon.sex targethicon.sex targethicon.sex targethicon.sex ----0.07785 00.07785 00.07785 00.07785 0.0584 145 .0584 145 .0584 145 .0584 145 ----1.332 1.85e1.332 1.85e1.332 1.85e1.332 1.85e----01010101

agegp.sex 0.33164 0.3261 22 1.017 3.20eagegp.sex 0.33164 0.3261 22 1.017 3.20eagegp.sex 0.33164 0.3261 22 1.017 3.20eagegp.sex 0.33164 0.3261 22 1.017 3.20e----01010101

Because tinttinttinttint is an ordered factor, polynomial contrasts are used.

11.1.3 The Michelson Speed of Light Data
Here is an example, using the Michelson speed of light data from the Venables and Ripley MASS library. The
model allows the determination to vary linearly with RunRunRunRun (from 1 to 20), with the slope varying randomly
between the five experiments of 20 runs each. We assume an autoregressive dependence structure of order 1.
We allow the variance to change from one experiment to another. Maximum likelihood tests suggest that one
needs at least this complexity in the variance and dependence structure to represent the data accurately. A model
that has neither fixed nor random RunRunRunRun effects seems all that is justified statistically. To test this, one needs to fit
models with and without these effects, setting method=”ML”method=”ML”method=”ML”method=”ML” in each case, and compare the likelihoods. (I
leave this as an exercise!) For purposes of doing this test, a first order autoregressive model would probably be
adequate. A model that ignores the sequential dependence entirely does give misleading results.

97

> library(mass) # if needed> library(mass) # if needed> library(mass) # if needed> library(mass) # if needed

> data(michelson) # if needed> data(michelson) # if needed> data(michelson) # if needed> data(michelson) # if needed

> michelson$Run <> michelson$Run <> michelson$Run <> michelson$Run <---- as.numeric(michelson$Run as.numeric(michelson$Run as.numeric(michelson$Run as.numeric(michelson$Run) # Ensure Run is a variable) # Ensure Run is a variable) # Ensure Run is a variable) # Ensure Run is a variable

> mich.lme1 <> mich.lme1 <> mich.lme1 <> mich.lme1 <---- lme(fixed = Speed ~ Run, data = michelson, lme(fixed = Speed ~ Run, data = michelson, lme(fixed = Speed ~ Run, data = michelson, lme(fixed = Speed ~ Run, data = michelson,

 random = ~ Run| Expt, correlation = corAR1(form = ~ 1 | Expt), random = ~ Run| Expt, correlation = corAR1(form = ~ 1 | Expt), random = ~ Run| Expt, correlation = corAR1(form = ~ 1 | Expt), random = ~ Run| Expt, correlation = corAR1(form = ~ 1 | Expt),

 weights = varIdent(form = ~ 1 | Expt)) weights = varIdent(form = ~ 1 | Expt)) weights = varIdent(form = ~ 1 | Expt)) weights = varIdent(form = ~ 1 | Expt))

> summary(mich.lme1)> summary(mich.lme1)> summary(mich.lme1)> summary(mich.lme1)

Linear mixedLinear mixedLinear mixedLinear mixed----effects model fit beffects model fit beffects model fit beffects model fit by REMLy REMLy REMLy REML

 Data: michelson Data: michelson Data: michelson Data: michelson

 AIC BIC logLik AIC BIC logLik AIC BIC logLik AIC BIC logLik

 1113 1142 1113 1142 1113 1142 1113 1142 ----546546546546

Random effects:Random effects:Random effects:Random effects:

 Formula: ~Run | Expt Formula: ~Run | Expt Formula: ~Run | Expt Formula: ~Run | Expt

 Structure: General positive Structure: General positive Structure: General positive Structure: General positive----definitedefinitedefinitedefinite

 StdDev Corr StdDev Corr StdDev Corr StdDev Corr

(Intercept) 46.49 (Intr)(Intercept) 46.49 (Intr)(Intercept) 46.49 (Intr)(Intercept) 46.49 (Intr)

Run 3.62 Run 3.62 Run 3.62 Run 3.62 ----1 1 1 1

Residual 121.29 Residual 121.29 Residual 121.29 Residual 121.29

CorrelationCorrelationCorrelationCorrelation Structure: AR(1) Structure: AR(1) Structure: AR(1) Structure: AR(1)

 Formula: ~1 | Expt Formula: ~1 | Expt Formula: ~1 | Expt Formula: ~1 | Expt

 Parameter estimate(s): Parameter estimate(s): Parameter estimate(s): Parameter estimate(s):

 Phi Phi Phi Phi

0.527 0.527 0.527 0.527

Variance function:Variance function:Variance function:Variance function:

 Structure: Different standard deviations per stratum Structure: Different standard deviations per stratum Structure: Different standard deviations per stratum Structure: Different standard deviations per stratum

 Formula: ~1 | Expt Formula: ~1 | Expt Formula: ~1 | Expt Formula: ~1 | Expt

 Parameter estimates: Parameter estimates: Parameter estimates: Parameter estimates:

 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1.000 0.340 0.646 0.543 0.501 1.000 0.340 0.646 0.543 0.501 1.000 0.340 0.646 0.543 0.501 1.000 0.340 0.646 0.543 0.501

FFFFixed effects: Speed ~ Run ixed effects: Speed ~ Run ixed effects: Speed ~ Run ixed effects: Speed ~ Run

 Value Std.Error DF t Value Std.Error DF t Value Std.Error DF t Value Std.Error DF t----value pvalue pvalue pvalue p----valuevaluevaluevalue

(Intercept) 868 30.51 94 28.46 <.0001(Intercept) 868 30.51 94 28.46 <.0001(Intercept) 868 30.51 94 28.46 <.0001(Intercept) 868 30.51 94 28.46 <.0001

Run Run Run Run ----2 2.42 94 2 2.42 94 2 2.42 94 2 2.42 94 ----0.88 0.3810.88 0.3810.88 0.3810.88 0.381

 Correlation: Correlation: Correlation: Correlation:

 (Intr) (Intr) (Intr) (Intr)

Run Run Run Run ----0.9340.9340.9340.934

Standardized WithinStandardized WithinStandardized WithinStandardized Within----Group Residuals:Group Residuals:Group Residuals:Group Residuals:

 Min Q1 Min Q1 Min Q1 Min Q1 Med Q3 Max Med Q3 Max Med Q3 Max Med Q3 Max

----2.912 2.912 2.912 2.912 ----0.606 0.109 0.740 1.810 0.606 0.109 0.740 1.810 0.606 0.109 0.740 1.810 0.606 0.109 0.740 1.810

Number of Observations: 100Number of Observations: 100Number of Observations: 100Number of Observations: 100

Number of Groups: 5 Number of Groups: 5 Number of Groups: 5 Number of Groups: 5

11.2 Time Series Models
The R ts (time series) package has a number of functions for manipulating and plotting time series, and for
calculating the autocorrelation function.

98

There are (at least) two types of method – time domain methods and frequency domain methods. In the time
domain models may be conventional “short memory” models where the autocorrelation function decays quite
rapidly to zero, or the relatively recently developed “long memory” time series models where the
autocorrelation function decays very slowly as observations move apart in time. A characteristic of “long
memory” models is that there is variation at all temporal scales. Thus in a study of wind speeds it may be
possible to characterise windy days, windy weeks, windy months, windy years, windy decades, and perhaps even
windy centuries. R does not yet have functions for fitting the more recently developed long memory models.

The function stl()stl()stl()stl() decomposes a times series into a trend and seasonal components, etc. The functions ar()ar()ar()ar()
(for “autoregressive” models) and associated functions, and arima0()arima0()arima0()arima0() (“autoregressive integrated moving
average models”) fit standard types of time domain short memory models. Note also the function gls()gls()gls()gls() in the
nlme library, which can fit relatively complex models that may have autoregressive, arima and various other
types of dependence structure.

The function spectrum()spectrum()spectrum()spectrum() and related functions is designed for frequency domain or “spectral” analysis.

11.3 Survival Analysis
For example times at which subjects were either lost to the study or died (“failed”) may be recorded for
individuals in each of several treatment groups. Engineering or business failures can be modelled using this same
methodology. The R survival5 library has state of the art abilities for survival analysis.

11.4 Exercises
1. Use the function acf()acf()acf()acf() to plot the autocorrelation function of lake levels in successive years in the data set
huronhuronhuronhuron. Do the plots both with type=”correlation”type=”correlation”type=”correlation”type=”correlation” and with type=”partial”type=”partial”type=”partial”type=”partial”.

11.5 References
Chambers, J. M. and Hastie, T. J. 1992. Statistical Models in S. Wadsworth and Brooks Cole Advanced Books
and Software, Pacific Grove CA.

Diggle, Liang & Zeger 1996. Analysis of Longitudinal Data. Clarendon Press, Oxford.

Everitt, B. S. and Dunn, G. 1992. Applied Multivariate Data Analysis. Arnold, London.

Hand, D. J. & Crowder, M. J. 1996. Practical longitudinal data analysis. Chapman and Hall, London.

Little, R. C., Milliken, G. A., Stroup, W. W. and Wolfinger, R. D. (1996). SAS Systems for Mixed Models.
SAS Institute Inc., Cary, New Carolina.

Pinheiro, J. C. and Bates, D. M. 2000. Mixed effects models in S and S-PLUS. Springer, New York.

Venables, W. N. and Ripley, B. D., 2nd edn 1997. Modern Applied Statistics with S-Plus. Springer, New York.

99

*12. Advanced Programming Topics

12.1. Methods
R is an object-oriented language. Objects may have a “class”. For functions such as print()print()print()print(), summary()summary()summary()summary(),
etc., the class of the object determines what action will be taken. Thus in response to print(x)print(x)print(x)print(x), R determines
the class attribute of xxxx, if one exists. If for example the class attribute is “factor”, then the function which finally
handles the printing is print.factor()print.factor()print.factor()print.factor(). The function print.default()print.default()print.default()print.default() is used to print objects that
have not been assigned a class.

More generally, the class attribute of an object may be a vector of strings. If there are “ancestor” classes –
parent, grandparent, . . ., these are specified in order in subsequent elements of the class vector. For example,
ordered factors have the class “ordered”, which inherits from the class “factor”. Thus:

> fac<> fac<> fac<> fac<----ordered(1:3)ordered(1:3)ordered(1:3)ordered(1:3)

> class(fac)> class(fac)> class(fac)> class(fac)

[1] "ordered" "factor" [1] "ordered" "factor" [1] "ordered" "factor" [1] "ordered" "factor"

Here facfacfacfac has the class “ordered”, which inherits from the parent class “factor”.

The function print.ordered()print.ordered()print.ordered()print.ordered(), which is the function that is called when you invoke print()print()print()print() with an
ordered factor, makes use of the fact that “ordered” inherits from “factor”.

> > > > print.orderedprint.orderedprint.orderedprint.ordered

function (x, quote = FALSE) function (x, quote = FALSE) function (x, quote = FALSE) function (x, quote = FALSE)

{{{{

 if (length(x) <= 0) if (length(x) <= 0) if (length(x) <= 0) if (length(x) <= 0)

 cat("ordered(0) cat("ordered(0) cat("ordered(0) cat("ordered(0)\\\\n")n")n")n")

 else print(levels(x)[x], quote = quote) else print(levels(x)[x], quote = quote) else print(levels(x)[x], quote = quote) else print(levels(x)[x], quote = quote)

 cat("Levels: ", paste(levels(x), collapse = " < "), " cat("Levels: ", paste(levels(x), collapse = " < "), " cat("Levels: ", paste(levels(x), collapse = " < "), " cat("Levels: ", paste(levels(x), collapse = " < "), "\\\\n")n")n")n")

 invisible(x) invisible(x) invisible(x) invisible(x)

}}}}

Note that it is a convenience for print.ordered()print.ordered()print.ordered()print.ordered() to call print.factor()print.factor()print.factor()print.factor(). The function
print.glm()print.glm()print.glm()print.glm() does not call print.lm()print.lm()print.lm()print.lm(), even though glm objects inherit from lm objects.

12.2 Extracting Arguments to Functions
How, inside a function, can one extract the value assigned to a parameter when the function was called? Below
there is a function extract.arg()extract.arg()extract.arg()extract.arg(). When it is called as extract.arg(a=xx)extract.arg(a=xx)extract.arg(a=xx)extract.arg(a=xx), we want it to return
“xx”“xx”“xx”“xx”. When it is called as extract.arg(a=xy)extract.arg(a=xy)extract.arg(a=xy)extract.arg(a=xy), we want it to return “xy”“xy”“xy”“xy”. Here is how it is done.

extract.arg <extract.arg <extract.arg <extract.arg <----

function (a)function (a)function (a)function (a)

{{{{

 s <s <s <s <---- substitute(a) substitute(a) substitute(a) substitute(a)

 as.character(s)as.character(s)as.character(s)as.character(s)

}}}}

> extract.arg(a=xy)> extract.arg(a=xy)> extract.arg(a=xy)> extract.arg(a=xy)

[1] “xy”[1] “xy”[1] “xy”[1] “xy”

If the argument is a function, we may want to get at the arguments to the function. Here is how one can do it
deparse.args <deparse.args <deparse.args <deparse.args <----

function (a)function (a)function (a)function (a)

{{{{

 s <s <s <s <---- substitute (a) substitute (a) substitute (a) substitute (a)

100

 if(mode(s) == "call"){if(mode(s) == "call"){if(mode(s) == "call"){if(mode(s) == "call"){

 # the first element of a 'call' is the function called# the first element of a 'call' is the function called# the first element of a 'call' is the function called# the first element of a 'call' is the function called

 # so we don't deparse that, just the arguments.# so we don't deparse that, just the arguments.# so we don't deparse that, just the arguments.# so we don't deparse that, just the arguments.

 print(paste(“The function is: “, s[1],”()”, collapse=””)) print(paste(“The function is: “, s[1],”()”, collapse=””)) print(paste(“The function is: “, s[1],”()”, collapse=””)) print(paste(“The function is: “, s[1],”()”, collapse=””))

 lapply (s[lapply (s[lapply (s[lapply (s[----1], function (x)1], function (x)1], function (x)1], function (x)

 pastepastepastepaste (deparse(x), collapse = " (deparse(x), collapse = " (deparse(x), collapse = " (deparse(x), collapse = "\\\\n"))n"))n"))n"))

 } } } }

 else stop ("argument is not a function call")else stop ("argument is not a function call")else stop ("argument is not a function call")else stop ("argument is not a function call")

}}}}

For example:
> deparse.args(list(x+y, foo(bar)))> deparse.args(list(x+y, foo(bar)))> deparse.args(list(x+y, foo(bar)))> deparse.args(list(x+y, foo(bar)))

[1] "The function is: list ()"[1] "The function is: list ()"[1] "The function is: list ()"[1] "The function is: list ()"

[[1]][[1]][[1]][[1]]

[1] "x + y"[1] "x + y"[1] "x + y"[1] "x + y"

[[2]][[2]][[2]][[2]]

[1] "foo(bar)"[1] "foo(bar)"[1] "foo(bar)"[1] "foo(bar)"

12.3 Parsing and Evaluation of Expressions
When R encounters an expression such as mean(x+y)mean(x+y)mean(x+y)mean(x+y) or cbind(x,y)cbind(x,y)cbind(x,y)cbind(x,y), there are two steps:

1. The text string is parsed and turned into an expression, i.e. the syntax is checked and it is turned into code
that the R computing engine can more immediately evaluate.

2. The expression is evaluated.

Upon typing in
expression(mean(x+y))expression(mean(x+y))expression(mean(x+y))expression(mean(x+y))

the output is the unevaluated expression expression(mean(x+y))expression(mean(x+y))expression(mean(x+y))expression(mean(x+y)). Setting
my.exp <my.exp <my.exp <my.exp <---- expression(mean(x+y)) expression(mean(x+y)) expression(mean(x+y)) expression(mean(x+y))

stores this unevaluated expression in my.emy.emy.emy.expxpxpxp . The actual contents of my.expmy.expmy.expmy.exp are a little different from what
is printed out. R gives you as much information as it thinks helpful.

Note that expression(mean(x+y))expression(mean(x+y))expression(mean(x+y))expression(mean(x+y)) is different from expression(“mean(x+y)”),expression(“mean(x+y)”),expression(“mean(x+y)”),expression(“mean(x+y)”), as is obvious
when the expression is evaluated. A text string is a text string is a text string, unless one explicitly changes it
into an expression or part of an expression.

Let’s see how this works in practice
> x <> x <> x <> x <---- 101:110 101:110 101:110 101:110

> y <> y <> y <> y <---- 21:30 21:30 21:30 21:30

> my.exp <> my.exp <> my.exp <> my.exp <---- expression(mean(x+y)) expression(mean(x+y)) expression(mean(x+y)) expression(mean(x+y))

> my.txt <> my.txt <> my.txt <> my.txt <---- expression expression expression expression("mean(x+y)")("mean(x+y)")("mean(x+y)")("mean(x+y)")

> eval(my.exp)> eval(my.exp)> eval(my.exp)> eval(my.exp)

[1] 131[1] 131[1] 131[1] 131

> eval(my.txt)> eval(my.txt)> eval(my.txt)> eval(my.txt)

[1] "mean(x+y)"[1] "mean(x+y)"[1] "mean(x+y)"[1] "mean(x+y)"

What if we already have “mean(x+y)”“mean(x+y)”“mean(x+y)”“mean(x+y)” stored in a text string, and want to turn it into an expression? The
answer is to use the function parse(),parse(),parse(),parse(), but indicate that the parameter is text rather than a file name. Thus

> parse(text="mean(x+y)")> parse(text="mean(x+y)")> parse(text="mean(x+y)")> parse(text="mean(x+y)")

expression(mean(x + y))expression(mean(x + y))expression(mean(x + y))expression(mean(x + y))

101

We store the expression in my.exp2my.exp2my.exp2my.exp2, and then evaluate it
> my.exp2 <> my.exp2 <> my.exp2 <> my.exp2 <---- parse(text="mean(x+y)") parse(text="mean(x+y)") parse(text="mean(x+y)") parse(text="mean(x+y)")

> eval(my.exp2)> eval(my.exp2)> eval(my.exp2)> eval(my.exp2)

[1] 131[1] 131[1] 131[1] 131

Here is a function that creates a new data frame from an arbitrary set of columns of an existing data frame. Once
in the function, we attach the data frame so that we can leave off the name of the data frame, and use only the
column names

make.new.df <make.new.df <make.new.df <make.new.df <---- function(old.df = austpop, colnames = c("NSW", "ACT")) function(old.df = austpop, colnames = c("NSW", "ACT")) function(old.df = austpop, colnames = c("NSW", "ACT")) function(old.df = austpop, colnames = c("NSW", "ACT"))

{{{{

 attattattattach(old.df)ach(old.df)ach(old.df)ach(old.df)

 on.exit(detach(old.df))on.exit(detach(old.df))on.exit(detach(old.df))on.exit(detach(old.df))

 argtxt <argtxt <argtxt <argtxt <---- paste(colnames, collapse = ",") paste(colnames, collapse = ",") paste(colnames, collapse = ",") paste(colnames, collapse = ",")

 exprtxt <exprtxt <exprtxt <exprtxt <---- paste("data.frame(", argtxt, ")", sep = "") paste("data.frame(", argtxt, ")", sep = "") paste("data.frame(", argtxt, ")", sep = "") paste("data.frame(", argtxt, ")", sep = "")

 expr <expr <expr <expr <---- parse(text = exprtxt) parse(text = exprtxt) parse(text = exprtxt) parse(text = exprtxt)

 df <df <df <df <---- eval(expr) eval(expr) eval(expr) eval(expr)

 names(df) <names(df) <names(df) <names(df) <---- colnames colnames colnames colnames

 dfdfdfdf

}}}}

To verify that the function does what it should, type in
> make.new.df()> make.new.df()> make.new.df()> make.new.df()

 NSW ACT NSW ACT NSW ACT NSW ACT

1 1904 31 1904 31 1904 31 1904 3

.

The function do.call do.call do.call do.call()()()() makes it possible to supply the function name and the argument list in separate text
strings. When do.calldo.calldo.calldo.call is used it is only necessary to use parse()parse()parse()parse() in generating the argument list.

For example
make.new.df <make.new.df <make.new.df <make.new.df <----

function(old.df = austpop, colnames = c("NSW", "ACT"))function(old.df = austpop, colnames = c("NSW", "ACT"))function(old.df = austpop, colnames = c("NSW", "ACT"))function(old.df = austpop, colnames = c("NSW", "ACT"))

{{{{

 attach(old.df)attach(old.df)attach(old.df)attach(old.df)

 on.exit(detach(old.df))on.exit(detach(old.df))on.exit(detach(old.df))on.exit(detach(old.df))

 argtxt <argtxt <argtxt <argtxt <---- paste(colnames, collapse = ",") paste(colnames, collapse = ",") paste(colnames, collapse = ",") paste(colnames, collapse = ",")

 listexpr <listexpr <listexpr <listexpr <---- parse(text=paste("list(", argtxt, ")", sep = "" parse(text=paste("list(", argtxt, ")", sep = "" parse(text=paste("list(", argtxt, ")", sep = "" parse(text=paste("list(", argtxt, ")", sep = ""))))))))

 df <df <df <df <---- do.call(“data.frame”, eval(listexpr)) do.call(“data.frame”, eval(listexpr)) do.call(“data.frame”, eval(listexpr)) do.call(“data.frame”, eval(listexpr))

 names(df) <names(df) <names(df) <names(df) <---- colnames colnames colnames colnames

 dfdfdfdf

}}}}

12.4 Plotting a mathematical expression
The following, given without explanation, illustrates some of the possibilities. It needs better error checking
than it has at present:

plplplplotcurve <otcurve <otcurve <otcurve <----

function(equation = "y = sqrt(1/(1+x^2))", ...){function(equation = "y = sqrt(1/(1+x^2))", ...){function(equation = "y = sqrt(1/(1+x^2))", ...){function(equation = "y = sqrt(1/(1+x^2))", ...){

leftright <leftright <leftright <leftright <---- strsplit(equation, split = "=")[[1]] strsplit(equation, split = "=")[[1]] strsplit(equation, split = "=")[[1]] strsplit(equation, split = "=")[[1]]

left <left <left <left <---- leftright[1] # The part to the left of the "=" leftright[1] # The part to the left of the "=" leftright[1] # The part to the left of the "=" leftright[1] # The part to the left of the "="

right <right <right <right <---- leftright[2] # The part to the right of the "=" leftright[2] # The part to the right of the "=" leftright[2] # The part to the right of the "=" leftright[2] # The part to the right of the "="

expr <expr <expr <expr <---- parse(text=right) parse(text=right) parse(text=right) parse(text=right)

102

xnaxnaxnaxname <me <me <me <---- all.vars(expr) all.vars(expr) all.vars(expr) all.vars(expr)

if(length(xname) > 1)stop(paste("There are multiple variables, if(length(xname) > 1)stop(paste("There are multiple variables, if(length(xname) > 1)stop(paste("There are multiple variables, if(length(xname) > 1)stop(paste("There are multiple variables,

i.e.",paste(xname, collapse=" & "),i.e.",paste(xname, collapse=" & "),i.e.",paste(xname, collapse=" & "),i.e.",paste(xname, collapse=" & "),

 "on the right of the equation")) "on the right of the equation")) "on the right of the equation")) "on the right of the equation"))

if(length(list(...))==0)assign(xname, 1:10)if(length(list(...))==0)assign(xname, 1:10)if(length(list(...))==0)assign(xname, 1:10)if(length(list(...))==0)assign(xname, 1:10)

 else { else { else { else {

 nam < nam < nam < nam <---- names(list(...)) names(list(...)) names(list(...)) names(list(...))

 if(nam!=xname)stop("Cl if(nam!=xname)stop("Cl if(nam!=xname)stop("Cl if(nam!=xname)stop("Clash of variable names")ash of variable names")ash of variable names")ash of variable names")

 assign("x", list(...)[[1]]) assign("x", list(...)[[1]]) assign("x", list(...)[[1]]) assign("x", list(...)[[1]])

 assign(xname, x) assign(xname, x) assign(xname, x) assign(xname, x)

}}}}

y <y <y <y <---- eval(expr) eval(expr) eval(expr) eval(expr)

yexpr <yexpr <yexpr <yexpr <---- parse(text=left)[[1]] parse(text=left)[[1]] parse(text=left)[[1]] parse(text=left)[[1]]

xexpr <xexpr <xexpr <xexpr <---- parse(text=xname)[[1]] parse(text=xname)[[1]] parse(text=xname)[[1]] parse(text=xname)[[1]]

plot(x, y, ylab = yexpr, xlab = xexpr, type="n")plot(x, y, ylab = yexpr, xlab = xexpr, type="n")plot(x, y, ylab = yexpr, xlab = xexpr, type="n")plot(x, y, ylab = yexpr, xlab = xexpr, type="n")

lines(spline(x,y))lines(spline(x,y))lines(spline(x,y))lines(spline(x,y))

mainexpr <mainexpr <mainexpr <mainexpr <---- parse(text=paste(left, " parse(text=paste(left, " parse(text=paste(left, " parse(text=paste(left, "==", right))==", right))==", right))==", right))

title(main = mainexpr)title(main = mainexpr)title(main = mainexpr)title(main = mainexpr)

}}}}

Try
plotcurve()plotcurve()plotcurve()plotcurve()

plotcurve("ang=asin(sqrt(p))", p=(1:49)/50)plotcurve("ang=asin(sqrt(p))", p=(1:49)/50)plotcurve("ang=asin(sqrt(p))", p=(1:49)/50)plotcurve("ang=asin(sqrt(p))", p=(1:49)/50)

12.4 Searching R functions for a specified token.
A token is a syntactic entity; for example function names are tokens. For example, we search all functions in the
working directory. The purpose of using unlist()unlist()unlist()unlist() in the code below is to change myfuncmyfuncmyfuncmyfunc from a list into a
vector of character strings.

mygrep <mygrep <mygrep <mygrep <----

function(str)function(str)function(str)function(str)

{ { { {

Assign the names of all objects in current R ## Assign the names of all objects in current R ## Assign the names of all objects in current R ## Assign the names of all objects in current R

working direc## working direc## working direc## working directory to the string vector tempobjtory to the string vector tempobjtory to the string vector tempobjtory to the string vector tempobj

########

 tempobj < tempobj < tempobj < tempobj <---- ls(envir=sys.frame(ls(envir=sys.frame(ls(envir=sys.frame(ls(envir=sys.frame(----1))1))1))1))

 objstring < objstring < objstring < objstring <---- character(0) character(0) character(0) character(0)

 for(i in tempobj) { for(i in tempobj) { for(i in tempobj) { for(i in tempobj) {

 myfunc < myfunc < myfunc < myfunc <---- get(i) get(i) get(i) get(i)

 if(is.function(myfunc)) if(is.function(myfunc)) if(is.function(myfunc)) if(is.function(myfunc))

 if(length(grep(str, if(length(grep(str, if(length(grep(str, if(length(grep(str,

 deparse(myfunc)))) deparse(myfunc)))) deparse(myfunc)))) deparse(myfunc))))

 objstring < objstring < objstring < objstring <---- c(objstring, i) c(objstring, i) c(objstring, i) c(objstring, i)

}}}}

return(objstring)return(objstring)return(objstring)return(objstring)

}}}}

mygrep(“for”) # Find all functions that include a for loopmygrep(“for”) # Find all functions that include a for loopmygrep(“for”) # Find all functions that include a for loopmygrep(“for”) # Find all functions that include a for loop

103

13. R Resources

13.1 R Packages for Windows
To get information on R packages (libraries), go to:

http://cran.rhttp://cran.rhttp://cran.rhttp://cran.r----project.orgproject.orgproject.orgproject.org

The Australian link (accessible only to users in Australia) is:
http://mirror.aarnet.edu.au/pub/CRAN/http://mirror.aarnet.edu.au/pub/CRAN/http://mirror.aarnet.edu.au/pub/CRAN/http://mirror.aarnet.edu.au/pub/CRAN/

For Windows 95 etc binaries, look in
http://mirror.aarnet.edu.au/pub/CRAN/windows/windowshttp://mirror.aarnet.edu.au/pub/CRAN/windows/windowshttp://mirror.aarnet.edu.au/pub/CRAN/windows/windowshttp://mirror.aarnet.edu.au/pub/CRAN/windows/windows----9x/9x/9x/9x/

Look in the directory contrib for libraries.

New libraries are being added all the time. So it pays to check the CRAN site from time to time. Also, watch
for announcements on the electronic mailing lists r-help and r-announce.

13.2 Literature written by expert users
Much literature that has been written for S-PLUS is highly relevant for R.

Burns, P. J. 1998. S Poetry.
This 439 page document is available from

http://www.seanet.com/~pburns/Spoetry/.http://www.seanet.com/~pburns/Spoetry/.http://www.seanet.com/~pburns/Spoetry/.http://www.seanet.com/~pburns/Spoetry/.

The style is leisurely. However this assumes some prior knowledge of computing language terms. It may be a good book for
users with some initial knowledge of R.

Chambers, J. M. 1998. Programming with Data. A Guide to the S Language. Springer-Verlag, New York.
This is a book for specialists. It describes a new version of the S language that is the basis for version 5 of S-PLUS.

Chambers, J. M. and Hastie, T. J. 1992. Statistical Models in S. Wadsworth and Brooks Cole Advanced Books
and Software, Pacific Grove CA.
This is the basic reference on R and S-PLUS model formulae and models.

Everitt, B. S. 1994. A Handbook of Statistical Analyses using S-PLUS. Chapman and Hall, London.
The choice of analysis methods may seem idiosyncratic. It has little on the more recently developed methodology.

Harrell, F. 1997. An Introduction to S-PLUS and the Hmisc and Design Libraries.
The latest version of this manual is available from

http://hesweb1.med.virginia.edu/biostat/s/index.htmlhttp://hesweb1.med.virginia.edu/biostat/s/index.htmlhttp://hesweb1.med.virginia.edu/biostat/s/index.htmlhttp://hesweb1.med.virginia.edu/biostat/s/index.html

Chapters 1-4 and 9-10 are a good introduction to S-PLUS, likely to be particularly helpful to anyone who comes to R or S-
PLUS from SAS. The examples in this manual are largely medical.

Krause, A. and Olsen, M. 1997. The Basics of S and S-PLUS. Springer 1997.
This is an introductory book, at about the same level as Spector.

Venables, W.N., Smith, D.M. and the R Development Core Team. An Introduction to R. Notes on R: A
Programming Environment for Data Analysis and Graphics.
[A current version is available from CRAN sites. This is derived from an original set of notes written by Bill Venables and
Dave Smith for the S and S-PLUS environments.

Spector, P. 1994. An Introduction to S and S-PLUS. Duxbury Press.
This is a readable and compact beginner’s guide to the S language.

Venables, W. N. and Ripley, B. D., 3nd edn 1999. Modern Applied Statistics with S-PLUS. Springer, New
York.

This has become a text book for the use of S-PLUS and R for applied statistical analysis. It assumes a fair level of statistical
sophistication. Explanation is careful, but often terse. Together with the ‘Complements’ it gives brief introductions to
extensive libraries of functions that have been written or adapted by Ripley, Venables, and a number of other statisticians.
Supplementary material (`Complements’) is available from

http://www.stats.ox.ac.uk/pub/MASS3/.http://www.stats.ox.ac.uk/pub/MASS3/.http://www.stats.ox.ac.uk/pub/MASS3/.http://www.stats.ox.ac.uk/pub/MASS3/.

104

The supplementary material is extensive, and is continually supplemented. The present version of the statistical
`Complements’ has extensive information on new libraries that have come from third party sources.

Venables, W.N. and Ripley, B.D. 2000. S Programming. Springer 2000. This is a terse and careful
introduction to the dialects of the S language, including R.

R Development Core Team 1999. An Introduction to R.
This document is available from the CRAN sites noted in section 13.1.

13.3 The R-help electronic mail discussion list
Details of the r-help list, and of other lists that serve the R community, are available from the web site:

http://www.Rhttp://www.Rhttp://www.Rhttp://www.R----project.org/ project.org/ project.org/ project.org/

13.4 Competing Systems – XLISP-STAT
XLISP-STAT is a lisp-based system that, like S-PLUS and R, allows a seamless extensibility. It is available
from

http://www.stat.umn.edhttp://www.stat.umn.edhttp://www.stat.umn.edhttp://www.stat.umn.edu/~luke/xls/xlsinfo/xlsinfo.htmlu/~luke/xls/xlsinfo/xlsinfo.htmlu/~luke/xls/xlsinfo/xlsinfo.htmlu/~luke/xls/xlsinfo/xlsinfo.html

See also the code designed to accompany Cook and Weisberg’s book “Applied Regression Including Computing
and Graphics” (Wiley 1999), available from

http://www.stat.umn.edu/archttp://www.stat.umn.edu/archttp://www.stat.umn.edu/archttp://www.stat.umn.edu/arc

105

14. Appendix 1

14.1 Data Sets Referred to in these Notes

Data sets accompanying these notes
Barley Cars93.summary ais anesthetic austpop
dewpoint dolphins elasticband florida hills
huron islandcities kiwishade leafshape milk
moths oddbooks orings possum primates
rainforest seedrates soi tinting type.df

Data Set from Library ts
LakeHuron

Data Sets from Library BASE

airquality attitude cars islands

Data Sets from Library MASS
Aids2 Animals Cars93 PlantGrowth Rubber
cement cpus fgl michelson mtcars
painters pressure ships

14.2 Answers to Selected Exercises

Section 1.6

1. plot(distance~stretch,data=elasticband)

2. (ii), (iii), (iv)
plot(snow.cover ~ year, data = snow)plot(snow.cover ~ year, data = snow)plot(snow.cover ~ year, data = snow)plot(snow.cover ~ year, data = snow)

hist(snow$snow.cover)hist(snow$snow.cover)hist(snow$snow.cover)hist(snow$snow.cover)

hist(log(snow$snow.cover))hist(log(snow$snow.cover))hist(log(snow$snow.cover))hist(log(snow$snow.cover))

Section 2.8

1. The value of answer is (a) 12, (b) 22, (c) 600.

2. prod(c(10,3:5prod(c(10,3:5prod(c(10,3:5prod(c(10,3:5))))))))

3(i) bigsum < bigsum < bigsum < bigsum <---- 0; for (i in 1:100) {bigsum < 0; for (i in 1:100) {bigsum < 0; for (i in 1:100) {bigsum < 0; for (i in 1:100) {bigsum <---- bigsum+i }; bigsum bigsum+i }; bigsum bigsum+i }; bigsum bigsum+i }; bigsum

3(ii) sum(1:100)sum(1:100)sum(1:100)sum(1:100)

4(i) bigprod <bigprod <bigprod <bigprod <---- 1; for (i in 1:50) {bigprod < 1; for (i in 1:50) {bigprod < 1; for (i in 1:50) {bigprod < 1; for (i in 1:50) {bigprod <---- bigprod*i }; bigprod bigprod*i }; bigprod bigprod*i }; bigprod bigprod*i }; bigprod

4(ii) prod(1:50)prod(1:50)prod(1:50)prod(1:50)

5. radius <radius <radius <radius <---- 3:20; volume < 3:20; volume < 3:20; volume < 3:20; volume <---- 4*pi*radius^3/3 4*pi*radius^3/3 4*pi*radius^3/3 4*pi*radius^3/3
 sphere.data <sphere.data <sphere.data <sphere.data <---- data.frame(radiu data.frame(radiu data.frame(radiu data.frame(radius=radius, volume=volume)s=radius, volume=volume)s=radius, volume=volume)s=radius, volume=volume)

6. sapply(tinting, is.factor)sapply(tinting, is.factor)sapply(tinting, is.factor)sapply(tinting, is.factor)

106

 sapply(tinting[, 4:6], levels)sapply(tinting[, 4:6], levels)sapply(tinting[, 4:6], levels)sapply(tinting[, 4:6], levels)
 sapply(tinting[, 4:6], is.ordered)sapply(tinting[, 4:6], is.ordered)sapply(tinting[, 4:6], is.ordered)sapply(tinting[, 4:6], is.ordered)

Section 3.7

1. plot(Animals$body, Animals$brain, plot(Animals$body, Animals$brain, plot(Animals$body, Animals$brain, plot(Animals$body, Animals$brain, pch=1, =1, =1, =1,

 xlab="Body weight (kg)",ylab="Brain weight (g)") xlab="Body weight (kg)",ylab="Brain weight (g)") xlab="Body weight (kg)",ylab="Brain weight (g)") xlab="Body weight (kg)",ylab="Brain weight (g)")

2. plot(log(Animals$body),log(Animals$brain),pch=1,plot(log(Animals$body),log(Animals$brain),pch=1,plot(log(Animals$body),log(Animals$brain),pch=1,plot(log(Animals$body),log(Animals$brain),pch=1,

 xlab="Body weight (kg)", ylab="Brain weight (g)", axes=F) xlab="Body weight (kg)", ylab="Brain weight (g)", axes=F) xlab="Body weight (kg)", ylab="Brain weight (g)", axes=F) xlab="Body weight (kg)", ylab="Brain weight (g)", axes=F)

brainaxis <brainaxis <brainaxis <brainaxis <---- 10^seq(10^seq(10^seq(10^seq(----1,4) 1,4) 1,4) 1,4)

bodyaxis <bodyaxis <bodyaxis <bodyaxis <----10^seq(10^seq(10^seq(10^seq(----2,4)2,4)2,4)2,4)

axis(1, at=log(bodyaxis), lab=bodyaxis)axis(1, at=log(bodyaxis), lab=bodyaxis)axis(1, at=log(bodyaxis), lab=bodyaxis)axis(1, at=log(bodyaxis), lab=bodyaxis)

axis(2, at=log(brainaxis), lab=brainaxis)axis(2, at=log(brainaxis), lab=brainaxis)axis(2, at=log(brainaxis), lab=brainaxis)axis(2, at=log(brainaxis), lab=brainaxis)

box()box()box()box()

identify(log(Animals$body), log(Animals$brain), labels=row.names(Animals)) identify(log(Animals$body), log(Animals$brain), labels=row.names(Animals)) identify(log(Animals$body), log(Animals$brain), labels=row.names(Animals)) identify(log(Animals$body), log(Animals$brain), labels=row.names(Animals))

(See problem 4.)

3. par(mfrow = c(1,2)), etc.par(mfrow = c(1,2)), etc.par(mfrow = c(1,2)), etc.par(mfrow = c(1,2)), etc.

Section 7.9

1. x < x < x < x <---- seq(101,112) seq(101,112) seq(101,112) seq(101,112) or x <x <x <x <---- 101:112 101:112 101:112 101:112
2. rep(c(4,6,3),4)rep(c(4,6,3),4)rep(c(4,6,3),4)rep(c(4,6,3),4)
3. c(rep(4,8),rep(6,7),rep(3,9))c(rep(4,8),rep(6,7),rep(3,9))c(rep(4,8),rep(6,7),rep(3,9))c(rep(4,8),rep(6,7),rep(3,9)) or rep(c(4,6,3),c(8,7,9))rep(c(4,6,3),c(8,7,9))rep(c(4,6,3),c(8,7,9))rep(c(4,6,3),c(8,7,9))
4. rep(seq(1,9),seq(1,9))rep(seq(1,9),seq(1,9))rep(seq(1,9),seq(1,9))rep(seq(1,9),seq(1,9)) or rep(1:9, 1:9)rep(1:9, 1:9)rep(1:9, 1:9)rep(1:9, 1:9)
5. Use summary(airquality) summary(airquality) summary(airquality) summary(airquality) to get this information.
6(a) 2 7 7 5 12 12 42 7 7 5 12 12 42 7 7 5 12 12 42 7 7 5 12 12 4
6(b) 2 9 8 6 17 15 72 9 8 6 17 15 72 9 8 6 17 15 72 9 8 6 17 15 7
7. airquality[airquality$Ozone == max(airquality$Ozone),]airquality[airquality$Ozone == max(airquality$Ozone),]airquality[airquality$Ozone == max(airquality$Ozone),]airquality[airquality$Ozone == max(airquality$Ozone),]

 airquality$Wind[airquality$Ozone > quantile(airqualityairquality$Wind[airquality$Ozone > quantile(airqualityairquality$Wind[airquality$Ozone > quantile(airqualityairquality$Wind[airquality$Ozone > quantile(airquality$Ozone, .75)]$Ozone, .75)]$Ozone, .75)]$Ozone, .75)]

8. mean(snow$snow.cover[seq(2,10,2)])mean(snow$snow.cover[seq(2,10,2)])mean(snow$snow.cover[seq(2,10,2)])mean(snow$snow.cover[seq(2,10,2)])
 mean(snow$snow.cover[seq(1,9,2)])mean(snow$snow.cover[seq(1,9,2)])mean(snow$snow.cover[seq(1,9,2)])mean(snow$snow.cover[seq(1,9,2)])

9. sapply(claims, is.factor)sapply(claims, is.factor)sapply(claims, is.factor)sapply(claims, is.factor)
 levels(Cars93$Manufacturer), etc.levels(Cars93$Manufacturer), etc.levels(Cars93$Manufacturer), etc.levels(Cars93$Manufacturer), etc.

 To check which are ordered factors, type in
 sapply(claims, is.ordered) sapply(claims, is.ordered) sapply(claims, is.ordered) sapply(claims, is.ordered)
10. summary(airqualsummary(airqualsummary(airqualsummary(airquality); summary(attitude); summary(cpus)ity); summary(attitude); summary(cpus)ity); summary(attitude); summary(cpus)ity); summary(attitude); summary(cpus)
Comment on ranges of values, whether distributions seem skew, etc.

11. mtcars6<mtcars6<mtcars6<mtcars6<----mtcars[mtcars$cyl==6,]mtcars[mtcars$cyl==6,]mtcars[mtcars$cyl==6,]mtcars[mtcars$cyl==6,]
12. Cars93[Cars93$Type==”Small”|Cars93$Type==”Sporty”,]Cars93[Cars93$Type==”Small”|Cars93$Type==”Sporty”,]Cars93[Cars93$Type==”Small”|Cars93$Type==”Sporty”,]Cars93[Cars93$Type==”Small”|Cars93$Type==”Sporty”,]

13. mat34 < mat34 < mat34 < mat34 <---- matrix(rep(c(4,6,3),4), nrow=3, ncol=4) matrix(rep(c(4,6,3),4), nrow=3, ncol=4) matrix(rep(c(4,6,3),4), nrow=3, ncol=4) matrix(rep(c(4,6,3),4), nrow=3, ncol=4)

14. mat64 < mat64 < mat64 < mat64 <---- matrix(c(rep(4,8),rep(6,7),rep(3,9)), matrix(c(rep(4,8),rep(6,7),rep(3,9)), matrix(c(rep(4,8),rep(6,7),rep(3,9)), matrix(c(rep(4,8),rep(6,7),rep(3,9)), nrow=6, ncol=4)nrow=6, ncol=4)nrow=6, ncol=4)nrow=6, ncol=4)

Additional solutions will be included in later versions of this document.

	J H Maindonald
	Australian National University.
	Introduction
	
	The Use of these Notes
	The R Project

	1. Starting Up
	1.1	Getting started under Windows
	1.2	Using the Console (or Command Line) Window
	1.3 	A Short R Session
	1.3.1	Entry of Data at the Command Line
	1.3.2 Options for use of read.table()
	1.3.3 Options for plot() and allied functions

	1.4 	Further Notational Details
	1.5 	On-line Help
	1.6 	Exercise

	2. An Overview of R
	2.1 The Uses of R
	2.1.1 R may be used as a calculator.
	2.1.2 R will provide numerical or graphical summaries of data
	2.1.3 R has extensive graphical abilities
	2.1.4 R will handle a variety of specific analyses
	2.1.5 R is an Interactive Programming Language

	2.2 The Look and Feel of R
	2.3 R Objects
	*�2.4 Looping
	2.4.1 More on looping

	2.5 R Functions
	2.5.2 A Plotting function

	2.6 Vectors
	2.6.1 Joining (concatenating) vectors
	2.6.2 Subsets of Vectors
	2.6.3 The Use of NA in Vector Subscripts
	2.6.4 Factors

	2.7 Data Frames
	2.7.1 Data frames as lists
	2.7.2 Inclusion of character string vectors in data frames
	2.7.3 Built-in data sets

	2.8 Common Useful Functions
	2.8.1 Applying a function to all columns of a data frame

	2.9 Making Tables
	2.9.1 Numbers of NAs in subgroups of the data

	2.10 The R Directory Structure
	2.11 More Detailed Information
	2.11 Exercises

	3. Plotting
	3.1 plot () and allied functions
	3.1.1 Newer plot methods

	3.2 Fine control – Parameter settings
	3.2.1 Multiple plots on the one page
	3.2.2 The shape of the graph sheet

	3.3 Adding points, lines and text
	3.3.1 Size, colour and choice of plotting symbol
	3.3.2 Adding Text in the Margin

	3.4 Identification and Location on the Figure Region
	3.4.1 identify()
	3.4.2 locator()

	3.5 Plots that show the distribution of data values
	3.5.1 Histograms
	3.5.2 Density Plots
	3.5.3 Boxplots
	3.5.4 Normal probability plots

	3.6 Other Useful Plotting Functions
	3.6.1 Scatterplot smoothing
	3.6.2 Adding lines to plots
	3.6.3 Rugplots
	3.6.4 Scatterplot matrices
	3.6.5 Dotplots

	3.7 Plotting Mathematical Symbols
	3.8 Guidelines for Graphs
	3.9 Exercises
	3.10 References

	4. Lattice graphics, and coplot()
	4.1 Examples that Present Panels of Scatterplots – Using xyplot()
	An incomplete list of lattice Functions

	4.2 Using coplot()
	4.3 Exercises

	5. Linear (Multiple Regression) Models and Analysis of Variance
	5.1 The Model Formula in Straight Line Regression
	5.2 Regression Objects
	5.3 Model Formulae, and the X Matrix
	5.3.1 Model Formulae in General
	*5.3.2 Manipulating Model Formulae

	5.4 Multiple Linear Regression Models
	5.4.1 The data frame Rubber
	5.4.2 Weights of Books

	5.5 Polynomial and Spline Regression
	5.5.1 Polynomial Terms in Linear Models
	5.5.2 What order of polynomial?
	5.5.3 Pointwise confidence bounds for the fitted curve
	Here is code that will give pointwise 95% confidence bounds. Note that these do not combine to give a confidence region for the total curve! The construction of such a region is a much more complicated task!
	5.5.4 Spline Terms in Linear Models

	5.6 Using Factors in R Models
	5.6.1 The Model Matrix
	*5.6.2 Other Choices of Contrasts

	5.7 Multiple Lines – Different Regression Lines for Different Species
	5.8 aov models (Analysis of Variance)
	5.8.1 Plant Growth Example
	*5.8.2 Shading of Kiwifruit Vines

	5.9 Exercises
	5.10 References
	Venables, W. N. and Ripley, B. D., 2nd edn 1997. Modern Applied Statistics with S-Plus. Springer, New York.

	6. Multivariate and Tree-Based Methods
	6.1 Multivariate EDA, and Principal Components Analysis
	6.2 Cluster Analysis
	6.3 Discriminant Analysis
	6.4 Decision Tree models (Tree-based models)
	6.5 Exercises
	6.6 References

	*7. R Data Structures
	7.1 Vectors
	7.1.1 Subsets of Vectors
	7.1.2 Patterned Data

	7.2 Missing Values
	7.3 Data frames
	7.3.1 Extraction of Component Parts of Data frames
	7.3.2 Data Sets that Accompany R Libraries

	7.4 Data Entry
	7.4.1 Idiosyncrasies
	7.4.2 Missing values when using read.table()
	7.4.3 Separators when using read.table()

	7.5 Factors and Ordered Factors
	7.6 Ordered Factors
	7.7 Lists
	*7.8 Matrices and Arrays
	7.8.1 Arrays
	7.8.2 Conversion of Numeric Data frames into Matrices

	7.9 Different Types of Attachments
	7.10 Exercises

	8. Useful Functions
	8.1 Confidence Intervals and Tests
	8.1.1 The t-test and associated confidence interval
	8.1.2 Chi-Square tests for two-way tables

	8.2 Matching and Ordering
	8.3 String Functions
	*8.3.1 Operations with Vectors of Text Strings – A Further Example

	8.4 Application of a Function to the Columns of an Array or Data Frame
	8.4.1 apply()
	8.4.2 sapply()

	*8.5 tapply()
	8.6 Splitting Vectors and Data Frames Down into Lists – split()
	*8.7 Merging Data Frames
	8.8 Dates
	8.9 Exercises

	9. Writing Functions and other Code
	9.1 Syntax and Semantics
	9.1.1 A Function that gives Data Frame Details
	9.1.2 Compare Working Directory Data Sets with a Reference Set

	9.2 Issues for the Writing and Use of Functions
	9.3 Functions as aids to Data Management
	9.3.1 Graphs

	9.4 A Simulation Example
	9.4.1 Poisson Random Numbers

	9.5 Exercises

	*10. GLM, and General Non-linear Models
	10.1 A Taxonomy of Extensions to the Linear Model
	10.2 Logistic Regression
	10.2.1 Anesthetic Depth Example

	10.3 glm models (Generalized Linear Regression Modelling)
	10.3.2 Data in the form of counts
	10.3.3 The gaussian family

	10.4 Models that Include Smooth Spline Terms
	10.4.1 Dewpoint Data

	10.5 Non-linear Models
	10.6 Model Summaries
	10.7 Further Elaborations
	10.8 Exercises
	10.9 References

	*11. Multi-level Models, Time Series and Survival Analysis
	11.1 Multi-Level Models, Including Repeated Measures Models
	11.1.1 The Kiwifruit Shading Data, Again
	11.1.2 The Tinting of Car Windows
	11.1.3 The Michelson Speed of Light Data

	11.2 Time Series Models
	11.3 Survival Analysis
	11.4 Exercises
	11.5 References

	*12. Advanced Programming Topics
	12.1. Methods
	12.2 Extracting Arguments to Functions
	12.3 Parsing and Evaluation of Expressions
	12.4 Plotting a mathematical expression
	12.4 Searching R functions for a specified token.

	13. R Resources
	13.1 R Packages for Windows
	13.2 Literature written by expert users
	13.3 The R-help electronic mail discussion list
	13.4 Competing Systems – XLISP-STAT

	14. Appendix 1
	14.1 Data Sets Referred to in these Notes
	Data sets accompanying these notes
	Data Set from Library ts
	Data Sets from Library BASE
	Data Sets from Library MASS

	14.2 Answers to Selected Exercises
	Section 1.6
	Section 2.8
	Section 3.7
	Section 7.9

