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Lindenmayer, D. B., Viggers, K. L., Cunningham, R. B., and Donnelly, C. F. : Morphological
variation among populations of the mountain brushtail possum, trichosurus caninus Ogibly
(Phalangeridae:M arsupialia). Australian Journal of Zoology 43: 449-459, 1995.

possum n. 1 Any of many chiefly herbivorous, long-tailed, tree-dwelling, mainly Australian marsupials,
some of which are gliding animals (e.g. brush-tailed possum, flying possum). 2 amildly scornful term
for a person. 3 an affectionate mode of address.

From the Australian Oxford Paperback Dictionary, 2™ ed, 1996.
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Introduction

R implements a dialect of the S language that was developed at AT& T Bell Laboratories by Rick Becker, John
Chambers and Allan Wilks. Versions of R are available, at no cost, for 32-bit versions of Microsoft Windows for
Linux, for Unix and for Macintosh systems 8.6 or later. It is available through the Comprehensive R Archive
Network (CRAN). Web addresses are given below.

The citation for John Chambers' 1998 Association for Computing Machinery Software award stated that S has
“forever altered how people analyze, visualize and manipulate data.” The R project enlarges on the ideas and
insights that generated the S language.

Here are points relating to the use of R that potential users might consider:
1. R has extensive and powerful graphics abilities, that are tightly linked with its analytic abilities.

2. Although thereis no official support for R, itsinformal support network, accessible from the r-help mailing
list, can be highly effective.

3. Simple calculations and analyses can be handled straightforwardly, albeit (in the current version) using a
command line interface. Chapters 1 and 2 are intended to give the flavour of what is possible without getting
deeply into the R language. If simple methods prove inadequate, there can be recourse to the huge range of
more advanced abilities that R offers. Adaptation of available abilities allows even greater flexibility.

4. The R community iswidely drawn, from application area specialists as well as statistical speciaists. Itisa
community that is sensitive to the potential for misuse of statistical techniques and suspicious of what might
appear to be mindless use. Expect scepticism of the use of models that are not susceptible to some minimal
form of data-based validation.

5. Because Risfree, users have no right to expect attention, on the r-help list or elsewhere, to queries. Be
grateful for whatever help is given.

There is no substitute for experience and expert knowledge, even when the statistical analysis task may seem
straightforward. Neither R nor any other statistical system will give the statistical expertise that is needed to use
sophisticated abilities, or to know when naive methods are not enough. Experience with the use of R is however,
more than with most systems, likely to be an educational experience.

While R isasreliable as any statistical software that is available, and exposed to higher standards of scrutiny
than most other systems, there are traps that call for special care. Many of the model fitting routinesin R are
leading edge. There may be alimited tradition of experience of the limitations and potential pitfalls of some of
the newer abilities. Whatever the statistical system, and especially when there is some element of complication,
check each step with care.

Hurrah for the R development team!

The Use of these Notes

The notes are designed so that users can run the examplesin the script files (ch1l-2.R, ch3-4.R, etc.) using the
notes as commentary. Under Windows alternatives are can either to type the commands in at the console, or to
open adisplay file window and feed the commands in one at atime from the display file window. Section 1.2
gives details of these alternative ways to input commands to R.

Users who are working through these notes on their own should have available for reference the document:
“An Introduction to R”, written by the R Development Core Team. To download a copy, or to download a
distribution set that includes this document, go to

http://cran.r-project.org

and look for the nearest CRAN (Comprehensive R Archive Network) site.

Australian users may wish to go directly to the site:
http://mirror_aarnet.edu.au/pub/CRAN



The R Project

Theinitial version of R was developed by Ross Ihaka and Robert Gentleman, both from the University of
Auckland. Development of R is now overseen by a “core team’ of about a dozen people, widely drawn from
different ingtitutions worldwide. The development model is similar to that of the increasingly popular Linux
operating system.

LikeLinux, Risan “open source” system. Source-code is available for inspection or for adaptation to other
systems. In principle, if it isunclear what a routine does, one can check the source code. Exposing code to the
critical scrutiny of highly expert users has proved an extremely effective way to identify bugs and other
inadequacies, and to elicit ideas for enhancement. Reported bugs are commonly fixed in the next minor-minor
release, which will usually appear within a matter of weeks.

A point and click interface is at an early stage of development. Users should be aware that R is developing
rapidly. Substantial new features appear every few months. As of version 1.2, R has a “ dynamic memory”

model. Depending on available computer memory, the processing of a data set containing one hundred thousand
observations and perhaps twenty variables may press the limits of what R can reasonably handle.

Novice users will notice small but occasionally important differences between the S dialect that R implements
and the commercia S-PLUS implementation of S. Those who write their own substantial functions and (more
importantly) librarieswill find large differences. Librariesthat have been written for R offer abilities that are
broadly comparable with, or in some instances go beyond, thosein S-PLUS libraries. These give access to up-to-
date methodol ogy from leading statistical researchers. R has strong graphics abilities. The recently released
beta version of the lattice graphics library gives many of the abilitiesthat are in the S-PLUS trellis library.

R is attractive as a language environment for the devel opment of new scientific computational tools. Computer-
intensive components can, if computational efficiency demands, be handled by a call to afunction that is written
in the C language.

The R-help mailing list is a useful source of advice and help. Be sure to check the available documentation
before posting thislist. Archives are available that can be searched for questions that may have been previously
answered. Thefinal chapter gives useful web addresses.

Jeff Wood (CMI'S, CSIRO), Andreas Ruckstuhl (Technikum Winterthur | ngenieurschule, Switzerland) and John
Braun (University of Western Ontario) gave me exemplary help in getting the earlier S-PLUS version of this
document somewhere near shipshape form. John Braun gave valuable help with proofreading, and provided
severa of the data sets and a number of the exercises. | take full responsibility for the errorsthat remain. | am
grateful, also, to the various scientists named in the notes who have allowed me to use their data.




1. Starting Up

R must be installed on your system! If it is not, follow the installation instructions appropriate to the operating
system. Installation is now especialy straightforward for Windows users. Copy down the latest SetupR.exe
from the relevant base directory on the nearest CRAN site, click onitsicon to start installation, and follow
instructions. Librariesthat do not come with the base distribution must be downloaded and installed separately.

It pays to have a separate workspace directory for each major project. For more details. see the README file
that isincluded with the R distribution. Users of Microsoft Windows may wish to create a separate icon for each

such workspace. First create the directory that will be used for the new workspace. Then right cli ck|c0p)mto
copy an existing R icon, it, right click|paste to place a copy on the desktop, right click|rename on the copy to

rename"r_tlz, and then finally go to right click|properties to set the Start in directory to be the workspace directory
that was set up earlier.

1.1 Getting started under Windows

Click onthe Ricon. Or if thereis more than oneicon, choose the icon that corresponds to the project that isin
hand. For this demonstration | will click on my r-notesicon.

In interactive use under Microsoft Windows there are several ways to input commandsto R. Figures 1 and 2
demonstrate two of the possibilities. Either or both of the following may be used at the user’s discretion:

For the moment, we will type commands into the command window, at the command line prompt. Fig. 1 shows
the command window as it appears when R has just been started, for version 0.90.0. At the time of writing, the
latest versionis 1.3.0.

fi= Edt Mixc MWindows Help

EEECOEREE

=" A Consols

E @ Copyright 19939, The B Davelopwent Core Team
Tersion 0,500 [Hosmeshey 22, 19899)

K 1= free =oftware sod comss wibh AHSOLUTELY NGO BAREANTY .
Tou mre weloomes to redistribuwte it under certaln conditiomns.

Type "?Flipensa" or "ilicence”™ for discribution dezails.

E i# & colls&borative project wich many COontoibucocs.

I'ype= WhoopbEributor=" for a laist.

Type "demn |1 Y for some demos, "help()l™ for on-line help, or
"hlp.Atart ()™ Tfor a HTAL bhrowvaesr interfece to help.

Type "giy® wo quic R.

[Freviously =sved workspaos rescored]

Fig. 1: The R console (command line) window.

! Thisis ashorteut for “ right click, then left click on the copy menu item”.

2 Enter the name of your choice into the name field. For ease of remembering, choose a name that closely
matches the name of the workspace directory.



The screen snapshot in Fig.2 shows adisplay file window. Thisalowsinput to R of statements from afile that
has been set up in advance. To get adisplay file window, go to the File menu. Then click on Display File. You
will be asked for the name of afile whose contents are then displayed in the window. In Fig. 2 the file was
rcommands.txt.

Highlight the commands that are intended for input to R. Click on the "Paste to consol€e’ icon, on the far left of
the display file toolbar in Figs. 2 and 3, to send these commandsto R.
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B im frd § "Pasmte ta Conmale' (lafz), "Primec" [middl=],
Tou ace | § mnd “Beturn focus to Consocl=' |cight).
Type
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¥ Bare mre commsands chat you might like to Tog!
Type
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Fig. 2. Thefocusison an R display file window, with the console window in the background.

= RGui
File Edit ‘windows

-l (€] D
iz

I

2 Paste to conzole

Fig. 3: The "paste to console’, “print’, and “return focus to console’ icons.

Under Unix, the standard form of input is the command line interface. Und%both Microsoft Windows and
Linux (or Unix), afurther possibility isto run R from within the emacs editor™. This works much better under

3This reguires both emacs and the emacs add-on call ESS. Both are free. look under Software|Other on the
CRAN web page.



Linix/Unix than under Windows. Under Microsoft Windows, an attractive option is to use a utility that is
designed for use with the shareware WinEdt editortd

1.2 Using the Console (or Command Line) Window

Fig. 1 showed the console window when it was first opened.

The command line prompt, i.e. the >, isan invitation to start typing in your commands. For example, typein
2+2 and pressthe Enter key. Hereiswhat | get on my screen:

> 242
[1] 4

>

Heretheresultis4. The[1] says, alittle strangely, “first requested element will follow”. Here, thereisjust one
element. The> indicatesthat R is ready for another command.

The exit or quit command is

> a0

Alternatives are to click on the File menu and then on Exit, or to click on the X in the top right hand corner of
the R window. There will be a message asking whether to save the workspace image. Clicking Y es (the safe
option) will save all the objects that remain in the workspace — any that were there at the start of the session and
any that have been added since.

1.3 A Short R Session

We will read into R afile that holds the population figures for Australian states and territories, and the total
population, at varioustimes since 1917. We will use information from thisfile to create agraph. Hereisthe
information in the file:

Year NSWVic. Qd SA WA Tas. NT ACT Aust.

1917 1904 1409 683 440 306 193 5 3 4941

1927 2402 1727 873 565 392 211 4 8 6182

1937 2693 1853 993 589 457 233 6 11 6836

1947 2985 2055 1106 646 502 257 11 17 7579

1957 3625 2656 1413 873 688 326 21 38 9640

1967 4295 3274 1700 1110 879 375 62 103 11799

1977 5002 3837 2130 1286 1204 415 104 214 14192

1987 5617 4210 2675 1393 1496 449 158 265 16264

1997 6274 4605 3401 1480 1798 474 187 310 18532

The following readsin the data from the file austpop . txt onadisk in drive a:
> austpop <- read.table(“a:/austpop.txt”, header=T)

The <- isaleft diamond bracket (<) followed by aminussign (-). It means“is assigned to”. Use of
header=T causes R to use= the first line to get header information for the columns. If column headings are not
included in the file, the argument can be omitted.

Now type in austpop at the command line prompt, displaying the object on the screen:
> austpop
Year NSW Vic. QId SA WA Tas. NT ACT Aust.
1 1917 1904 1409 683 440 306 193 5 3 4941
2 1927 2402 1727 873 565 392 211 4 8 6182

Wewill learn later that austpop is aspecia form of R object, known as adata frame. Data frames that consist
entirely of numeric data have a structure that is similar to that of numeric matrices.

* The R-WinEdt utility, whichisfree, isa“plugin” for WinEdt. For links to the relevant web pages, for WinEdt
and R-WinEdt , look under Software|Other on the CRAN web page.



We will now do aplot of the ACT population between 1917 and 1997. We will first of al remind ourselves of
the column names:

> names(austpop)
[1] llYearll IINSWII "ViC." llQIdll IISAII IIWAII llTas-ll IINTII
[9] IIACTII IlAust-ll

A simple way to get the plot is:
> plot(ACT ~ Year, data=austpop, pch=16)

The option pch=16 sets the plotting character to solid black dots. Fig. 4 showsthe graph:

300
|

ACT
200
|

50 100

e o °

0
|

1920 1940 1960 1980 2000

Year

Figure 4: ACT population, at varioustimes between
1917 and 1997.

This plot can be improved greatly. We can specify more informative axis labels, change size of the text and of
the plotting symbol, and so on.

1.3.1 Entry of Data at the Command Line

A dataframeis arectangular array of columns of data. Here we will have two columns, and both columns will
be numeric. The following data gives, for each amount by which an elastic band is stretched over the end of a
ruler, the distance that the band moved when rel eased:

Stretch (mm) Distance (cm)

46 148
54 182
48 173
50 166
44 109
42 141
52 166

One can use data. Frame () to input these (or other) data directly at the command line. We will give the data
frame the name elasticband:

elastichand <- data.frame(stretch=c(46,54,48,50,44,42,52),
distance=c(148,182,173,166,109,141,166))

1.3.2 Options for use of read.table()

The function read. table() takes, optionally various parameters additional to the file name that holds the
data. Specify header=TRUE if thereisan initial row of header names. The default isheader=FALSE. In
addition users can specify the separator character or characters. Command alternatives to the default use of a



space are sep="","" and sep=""\t"". Thislast choice makes tabs separators. Similarly, users can control over
the choice of missing value character or characters, which by default isNA. If the missing value character isa

period (*.”), specify na.strings=""_.".

R has several variants of read . table() that differ only in having different default parameter settings. Note
in particular read . csv(), which has settings that are suitable for comma delimited (csv) files that have been
generated from Excel spreadsheets.

If read.table() detectsthat linesin the input file have different numbers of fields, datainput will fail, with
an error message that draws attention to the discrepancy. It isthen often useful to use the function
count. fields() to report the number of fields that were identified on each separate line of thefile.

1.3.3 Options for plot() and allied functions

The function plot() and related functions accept parameters that control the plotting symbol, and the size and
colour of the plotting symbol. Detailswill be given in section 3.3.

1.4 Further Notational Details

As noted earlier, the command line prompt is
>

R commands (expressions) are typed in following this promptE.I

Thereis aso a continuation prompt, used when, following a carriage return, the command is still not complete.
By default, the continuation prompt is
+

In these notes, we often continue commands over more than one line, but omit the + that will appear on the
commands window if the command is typed in as we show it.

For the names of R objects or commands, caseis significant. Thus Austpop is different from austpop. For
file names however, the Microsoft Windows conventions apply, and case does not distinguish file names. On
Unix systems letters that have a different case are treated as different.

Anything that follows a # on the command line is taken as comment and ignored by R.

Note: Recall that, in order to quit from the R session we had to type q(). Thisisbecause q isafunction.
Typing g on its own, without the parentheses, displays the text of the function on the screen. Try it!

1.5 On-lineHep
To get ahelp window (under R for Windows) with alist of help topics, type:
> helpQ

In R for Windows, an aternative isto click on the help menu item, and then use key words to do asearch. To
get help on aspecific R function, e.g. plot(), typein
> help(plot)

The two search functions help. search() and apropos() can be a huge help in finding what one wants.
Examples of their use are:

> help.search("matrix')
Thislists al functions whose help pages have atitle or aias in which the text string “matrix”

appears.
> apropos(matrix)
Thislists all function names that include the text “matrix”.

Experimentation often helps clarify the precise action of an R function.

>M ultiple commands may appear on the one line, with the semicolon (;) as the separator.



16 Exercise

1. Inthe dataframe elasticband from section 1.3.1, plot distance against stretch.

2. The following ten observations, taken during the years 1970-79, are on October snow cover for Eurasia.
(Snow cover isin millions of square kilometers):

year snow. cover

1970 6.5

1971 12.0

1972 14.9

1973 10.0

1974 10.7

1975 7.9

1976 21.9

1977 12.5

1978 14.5

1979 9.2

i. Enter the datainto R. [Section 1.3.1 showed one way to do this. To save keystrokes, enter the successive
yearsas 1970:1979]

ii. Plot show.cover versusyear.
iii Use the hist() command to plot a histogram of the snow cover values.
iv. Repeat ii and iii after taking logarithms of snow cover.

3. Input the following data, on damage that had occurred in space shuttle launches prior to the disastrous launch
of Jan 28 1986. These are the data, for 6 launches out of 24, that were included in the pre-launch charts that
were used in deciding whether to proceed with the launch. (Datafor the 23 launches where information is
avalable isin the data set orings that accompanies these notes.)

Temperature Erosion Blowby Total
(3] incidents incidents incidents

\‘

o
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Enter these data into a data frame, with (for example) column names temperature, erosion, blowby
and total. (Refer back to Section 1.3.1). Plot total incidents against temperature.



2. An Overview of R

2.1 TheUsesof R

2.1.1 R may be used as a calculator.

R evaluates and prints out the result of any expression that one typesin at the command line in the console
window. Expressions are typed following the prompt (>) on the screen. The result, if any, appearson
subsequent lines

> 2+2

[1] 4

> sqrt(10)

[1] 3.162278

> 2*3*4*5

[1] 120

> 1000*(1+0.075)"5 - 1000 # Interest on $1000, compounded annually

[1] 435.6293

> # at 7.5% p.a. for Ffive years

> pi # R knows about pi

[1] 3-141593

> 2*pi*6378 #Circumference of Earth at Equator, in km; radius is 6378 km
[1] 40074.16

> sin(c(30,60,90)*pi/180) # Convert angles to radians, then take sin()
[1] 0.5000000 0.8660254 1.0000000

2.1.2 R will provide numerical or graphical summaries of data

A specia class of object, called adata frame, stores rectangular arrays in which the columns may be vectors of
numbers or factors or text strings. Data frames are central to the way that all the more recent R routines process
data. For now, think of data frames as matrices, where the rows are observations and the columns are variables.

Asafirst example, consider the data frame hii I I's that accompanies these notes|3 . This has three columns
(variables), with the names distance, cl imb, and time. Typing in summary(hil1s)gives summary
information on these variables. There is one column for each variable, thus:

> datac(hills) # Gives access to the data frame hills
> summaryChills)
distance climb time
Min.: 2.000 Min.: 300 Min.: 15.95
1st Qu.: 4.500 1st Qu.: 725 1st Qu.: 28.00
Median: 6.000 Median:1000 Median: 39.75

Mean: 7.529 Mean:1815 Mean: 57.88
3rd Qu.: 8.000 3rd Qu.:2200 3rd Qu.: 68.62
Max. :28.000 Max. :7500 Max.:204.60

We may for example require information on ranges of variables. Thus the range of distances (first column) is
from 2 milesto 28 miles, while the range of times (third column) is from 15.95 (minutes) to 204.6 minutes.

We will discuss graphical summariesin the next section.

® Thereisalso aversionin the Venables and Ripley MASS library.



2.1.3 R has extensive graphical abilities

The main R graphics function is plot(). In addition to plot() there are functions for adding points and lines
to existing graphs, for placing text at specified positions, for specifying tick marks and tick labels, for labelling

axes, and so on.

There are various other alternative helpful forms of graphical summary. A helpful graphical summary for the

hi 1 ls dataframe isthe scatterplot matrix, shownin Fig. 5. For this, type:

> pairs(hills)

1000 4000 7000
| !)I L1l
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Figure5: Scatterplot matrix for the Scottish hill race data

2.1.4 R will handle a variety of specific analyses

The examples that will be given are correlation and regression.

Correlation:

We calculate the correlation matrix for the hi l I's data:

> options(digits=3)
> cor(hills)
distance climb time
distance 1.000 0.652 0.920
climb 0.652 1.000 0.805
time 0.920 0.805 1.000

Suppose we wish to calculate logarithms, and then calculate correlations. We can do all thisin one step, thus:

> cor(log(hills))
distance climb time

distance 1.00 0.700 0.890
climb 0.70 1.000 0.724
time 0.89 0.724 1.000

Unfortunately R was not clever enough to relabel distance as log(distance), climb aslog(climb), and time as
Notice that the correlations between time and distance, and between time and climb, have reduced.

log(time).
Why has this happened?

25

15

150

50
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Straight Line Regression:

Hereisastraight line regression calculation. One specifiesan Im (= linear model) expression, which R
evaluates. The data are stored in the dataframe elasticband that accompanies these notes. The variable
names are the names of columnsin that data frame. The command asks for the regression of distance travelled
by the elastic band (distance) on the amount by which it is stretched (stretch).

> plot(distance ~ stretch,data=elasticband, pch=16)
> elastic.Im <- Im(distance~stretch,data=elasticband)
> Im(distance ~stretch,data=elasticband)

Call:
Im(formula = distance ~ stretch, data = elasticband)

Coefficients:
(Intercept) stretch
-63.571 4.554

More complete information is available by typing
> summary(Im(distance~stretch,data=elasticband))

Try it!

2.1.5 R is an Interactive Programming Language

We calculate the Fahrenheit temperatures that correspond to Celsius temperatures 25, 26, ..., 30:
> celsius <- 25:30
> fahrenheit <- 9/5*celsius+32
> conversion <- data.frame(Celsius=celsius, Fahrenheit=fahrenheit)
> print(conversion)
Celsius Fahrenheit

1 25 77.0
2 26 78.8
3 27 80.6
4 28 82.4
5 29 84.2
6 30 86.0

We could also have used aloop. Ingeneradl it is preferable to avoid loops whenever, as here, there is a good
alternative. Loops may involve severe computational overheads.

2.2 TheLook and Feel of R

Risafunctiona language. Thereis alanguage core that uses standard forms of algebraic notation, allowing the
calculations described in Section 2.1.1. Beyond this, most computation is handled using functions. Even the
action of quitting from an R session uses, as noted earlier, the function call q().

It is often possible and desirable to operate on objects — vectors, arrays, lists and so on —asawhole. This
largely avoids the need for explicit loops, leading to clearer code. Section 2.1.5 above gave an example.

The structure of an R progrﬁn looks very like the structure of the widely used general purpose language C and
its successors C™ and Java .

" Note however that R has no header files, most declarations are implicit, there are no pointers, and vectors of
text strings can be defined and manipulated directly. The implementation of R relies heavily on list processing
ideas fromthe LISP language. Listsare akey part of R syntax.
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2.3 R Objects

All R entities, including functions and data structures, exist as objects. They can all be operated on as data
Typein Is() to see the names of al objectsin your workspace. An alternative to Isq;]s objects(Q). |

both cases there is provision to specify a particular pattern, e.g. starting with the letter “p’
Typing the name of an object causes the printing of its contents. Try typingq, mean, etc.

Important: On quitting, R offers the option of saving the workspace image. This allows the retention, for usein
the next session in the same workspace, any objects that were created in the current session. Careful
housekeeping may be needed to distinguish between objects that are to be kept and objects that will not be used
again. Beforetyping q() to quit, use rm() to remove objects that are no longer required. Saving the
workspace image will then save everything remains. The workspace image will be automatically loaded upon
starting another session in that directory.

*%.4 L ooping

In R thereis often a better alternative to writing an explicit loop. Where possible, use one of the built-in
functions to avoid explicit looping. A simple example of a for loop isuﬁ
for (i in 1:10) print(i)

Hereis another example of aFor loop, to do in a complicated way what we did very simply in section 2.1.5:
> # Celsius to Fahrenheit
> for (celsius in 25:30)
+ print(c(celsius, 9/5*celsius + 32))
[1] 25 77
[1] 26.0 78.8
[1] 27.0 80.6
[1] 28.0 82.4
[1] 29.0 84.2
[1] 30 86

2.4.1 More on looping

Here is along-winded way to sum the three numbers 31, 51 and 91:

> answer <- 0

> for (J in c(31,51,91)){answer <- j+answer}

> answer

[1] 173
The calculation iteratively builds up the object answer, using the successive values of j listed in the vector
(31,51,91). i.e. Initialy, j=31, and answer is assigned the value 31 + 0 = 31. Then j=51, and answer is

assigned the value 51 + 31 = 82. Finally, j=91, and answer isassigned thevalue 91 + 81 = 173.  Then the
procedure ends, and the contents of answer can be examined by typing in answer and pressing the Enter key.

8 Typein help(ls) and help(grep) to get details. The pattern matching conventions are those used for
grep(), whichismodelled on the Unix grep command.

o Asterisks (*) identify sections that are more technical and might be omitted at afirst reading

10 Other looping constructs are:
repeat <expression> ## break must appear somewhere inside the loop
while (x>0) <expression>

Here <expression> isan R statement, or a sequence of statements that are enclosed within braces
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Thereisamuch easier (and better) way to do this calcul ation:
> sum(c(31,51,91))
[1] 173

Skilled R users have limited recourse to loops. There are often, asin the example above, better alternatives.

2.5 R Functions

We give two simple examples of R functions.

2.5.1 An Approximate Miles to Kilometers Conversion
miles.to.km <- function(miles)miles*8/5

Thereturn value isthe value of the final (and in thisinstance only) expression that appears in the function
bod)E.l Use the function thus

> miles.to.km(175) # Approximate distance to Sydney, in miles

[1] 280

The function will do the conversion for severa distances all at once. To convert a vector of the three distances
100, 200 and 300 miles to distances in kilometers, specify:

> miles.to.km(c(100,200,300))
[1] 160 320 480

2.5.2 A Plotting function

The data set Florida has the votes in the 2000 election for the various US Presidential candidates, county by
county in the state of Florida. The following plots the vote for Buchanan against the vote for Bush.

attach(florida)
plot(BUSH, BUCHANAN, xlab="Bush”, ylab="Buchanan’)
detach(florida) # In S-PLUS, specify detach(*“florida™)

Here isafunction that makes it possible to plot the figures for any pair of candidates.
plot.florida <- function(xvar="BUSH”, yvar="BUCHANAN""){
x <- florida[,xvar]
y<- Florida[,yvar]
plot(x, y, xlab=xvar,ylab=yvar)
mtext(side=3, line=1.75,
“Votes in Florida, by county, in \nthe 2000 US Presidential election™)
}

Note that the function body isenclosed in braces ({ }).

Aswell asplot.florida(), thisalows, eg.
plot.florida(yvar="NADER™™) # yvar="NADER” over-rides the default
plot.florida(xvar="GORE”, yvar="NADER’")

Fig. 6 shows the graph produced by plot. florida(), i.e. parameter settings are left at their defaults.

1 Alternatively areturn value may be given using an explicit return() statement. Thisishowever an
uncommon construction
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Votes in Florida, by county, in
the 2000 US Presidential election
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Figure 6: Election night count of votesreceived, by county,
in the US 2000 Presidential election.

2.6 Vectors

Examples of vectors are
c(2,3,5,2,7,1)
3:10 # The numbers 3, 4, .., 10
c(T,F,F,F,T,T,F)

c(’Canberra’,”Sydney”,”’Newcastle”,”Darwin’”)

Vectors may have mode logical, numeric or characterﬁ. The first two vectors above are numeric, the third is
logical (i.e. avector with elements of mode logical), and the fourth is a string vector (i.e. a vector with elements
of mode character).

The missing value symbol, which is NA, can be included as an element of a vector.

2.6.1 Joining (concatenating) vectors

Thecinc(2, 3, 5, 7, 1) aboveisanacronym for “concatenate”, i.e. the meaning is: “Join these
numbers together in to avector. Existing vectors may be included among the elements that are to be
concatenated. In the following we form vectors x and y, which we then concatenate to form a vector z:

> x <- ¢(2,3,5,2,7,1)
> X

[11235271

>y <- ¢(10,15,12)
>y

[1] 10 15 12

>z <-c(X, y)
>z
[1] 2 3 5 2 7 11015 12

12 gg ow, we will meet the notion of “class’, which isimportant for some of the more sophisticated language
features of S-PLUS. The logical, numeric and character vectors just given have classNULL, i.e. they have no
class. There are special types of numeric vector which do have a class attribute. Factors (see section 2.6.3) are
an most important example.
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The concatenate function c() may also be used to join lists.

2.6.2 Subsets of Vectors

There are two common ways to extract subsets of vectorsE.|

1. Specify the numbers of the elements that are to be extracted, e.g.
> x <- ¢(3,11,8,15,12) # Assign to x the values 3, 11, 8, 15, 12
> x[c(2,4)] # Extract elements (rows) 2 and 4
[1] 11 15

One can use negative numbers to omit elements:

> x <- ¢(3,11,8,15,12)

> x[-c(2,3)]

[1] 3 15 12
2. Specify avector of logical values. The elements that are extracted are those for which the logical valueisT.
Thus suppose we want to extract values of x that are greater than 10.

> x>10 # This generates a vector of logical (T or F)

[MFTFTT

> x[x>10]

[1] 11 15 12

Arithmetic relations that may be used in the extraction of subsets of vectorsare <, <=, >, >=, ==, and 1=. The
first four compare magnitudes, == tests for equality, and 1= tests for inequality.

2.6.3 The Use of NA in Vector Subscripts

Note that any arithmetic operation or relation that involves NA generates an NA. Set
y <- c(1, NA, 3, 0, NA)

Be warned that y[y==NA] <- O leavesy unchanged. Thereasonisthat all elementsof y==NA evaluate to
NA. Thisdoesnot select an element of y, and there is no assignment.
Toreplace all NAsby 0O, use

y[is.na(y)] <- 0

2.6.4 Factors

A factor is a specia type of vector, stored internally as a numeric vector with v;tﬁs 1,23,k Thevauekis

the number of levels. An attributes table givesthe ‘level’ for each integer value™ . Factors provide a compact
way to store character strings. They are crucial in the representation of categorical effectsin model and graphics
formulae. The class attribute of afactor has, not surprisingly, the value “factor”.

Consider a survey that has data on 691 females and 692 males. If the first 691 are females and the next 692
males, we can create a vector of strings that that holds the values thus:

13 A third more subtle method is available when vectors have named elements. One can then use a vector of
names to extract the e ements, thus:

> c(Andreas=178, John=185, Jeff=183)[c(""'John","Jeff")]
John Jeff
185 183

1% The attri butes() function makes it possible to inspect attributes. For example
attributes(factor(1:3))

The function levels() gives a better way to inspect factor levels.
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gender <- c(rep(“female”,691), rep(“male”,692))

(The usage isthat rep(“femalle”, 691) creates 691 copies of the character string “female”, and similarly
for the creation of 692 copies of “male’.)
We can change the vector to afactor, by entering:
gender <- factor(gender)
Internally the factor gender is stored as 691 1's, followed by 692 2's. It has stored with it a table that looks

like this:
1 | femae

2 | mae

Once stored as a factor, the space required for storage is reduced.

Whenever the context seems to demand a character string, the 1 istrandated into “female” and the 2 into “male”.
The values “female” and “male” are the levels of the factor. By default, the levels are in alphanumeric order, so
that “female” precedes “male’. Hence:

> levels(gender) # Assumes gender is a factor, created as above
[1] "female™ "male"
The order of the levelsin afactor determines the order in which the levels appear in graphs that use this
information, and in tables. To cause “male”’ to come before “female’, use
gender <- relevel(gender, ref=*male™)

An alternative is
gender <- factor(gender, levels=c(“male”, “female’))
Thislast syntax is available both when the factor isfirst created, or later when one wishes to change the order of
levelsin an existing factor. Incorrect spelling of the level names will generate an error message. Try
gender <- factor(c(rep(“female”,691), rep(“male”,692)))
table(gender)
gender <- factor(gender, levels=c(“male”, “female’))
table(gender)
gender <- factor(gender, levels=c(“Male”, “female’))
# Erroneous - "male™ rows now hold missing values
table(gender)
rm(gender) # Remove gender

2.7 Data Frames

Data frames are fundamental to the use of the R modelling and graphics functions. A dataframeisa
generalisation of a matrix, in which different columns may have different modes. All elements of any column
must however have the same mode, i.e. all numeric or all factor, or al character.

Among the data sets that are supplied to accompany these notesis one called Cars93. summary, created from
information in the Cars93 data set in the Venables and Ripley masslibrary. Hereitis:
> Cars93.summary
Min._passengers Max.passengers No.of.cars abbrev

Compact 4 6 16 C
Large 6 6 11 L
Midsize 4 6 22 M
Small 4 5 21 Sm
Sporty 2 4 14 Sp
Van 7 8 9 \

The data frame has row labels (access with row. names(Cars93.summary)) Compact, Large, ... The
column names (access with names (Cars93.summary)) are Min . passengers (i.e. the minimum number
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of passengersfor carsin this category), Max .passengers, No.of.cars., and abbrev. Thefirst three
columns have mode numeric, and the fourth has mode character. Columns can be vectors of any mode. The
column abbrev could equally well be stored as a factor.

Any of the followi ngL:‘_T/IviII pick out the fourth column of the data frame Cars93. summary, then storing it in
the vector type.

type <- Cars93.summary$abbrev

type <- Cars93.summaryl[,4]

type <- Cars93.summary[,”abbrev’]

type <- Cars93.summary[[4]] # Take the object that is stored
# in the fourth list element.

2.7.1 Data frames as lists

A dataframeis aIist‘Qf column vectors, al of equal length. Just as with any other list, subscripting extracts a
list. ThusCars93.summary[4] isadataframe with asingle column, which is the fourth column vector of
Cars93.summary. Asnoted above, use Cars93.summary[[4]] or Cars93.summary[,4] to extract
the column vector.

The use of matrix-like subscripting, e.g. Cars93.summary[,4] or Cars93.summary[1, 4], takes
advantage of the rectangular structure of data frames.

2.7.2 Inclusion of character string vectors in data frames

When dataareread in using read . table (), or when the data. frame() function is used to create data
frames, vectors of character strings are by default turned into factors. Often thisis convenient. If not, the
parameter setting as. is=T will prevent this behaviour, both with read . table () and with
data.frame().

2.7.3 Built-in data sets

We will often use data sets that accompany one of the R libraries, usually stored as data frames. One such data
frame, in the base library, is trees, which gives girth, height and volume for 31 Black Cherry Trees. To bring
it into the workspace, type:

> data(trees) # Bring data set into workspace

Here is summary information on this data frame
> summary(trees)

Girth Height Volume
Min. : 8.30 Min. 63 Min. :10.20
1st Qu.:11.05 1st Qu.:72 1st Qu.:19.40
Median :12.90 Median :76 Median :24.20
Mean :13.25 Mean :76 Mean :30.17
3rd Qu.:15.25 3rd Qu.:80 3rd Qu.:37.30
Max . :20.60 Max. 87 Max. :77.00

Type data() to get alist of built-in data setsin the libraries that have been loaded ™

1> Also legal isCars93.summary[2]. This givesadataframe with the single column Type.

n genera forms of list, elementsthat are of arbitrary type. They may be any mixture of scalars, vectors,
functions, etc.

17 Thelist include all libraries that are in the current environment.
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2.8 Common Useful Functions
printQ # Prints a single R object

cat(Q) # Prints multiple objects, one after the other

length() # Number of elements in a vector or of a list

mean()

median()

rangeQ

unique() # Gives the vector of distinct values

diffQ # Replace a vector by the vector of first differences
# N. B. diff(xX) has one less element than x

sort(Q) # Sort elements into order, but omitting NAs

order(Q # x[order(x)] orders elements of x, with NAs last

cumsum(Q)

cumprod()

revQ # reverse the order of vector elements

Thefunctions mean(), median(), range(), andanumber of other functions, take the argument
na.rm=T; i.e.remove NAs, then proceed with the calculation.

By default, sort() omitsany NAs. The function order () places NAslast. Hence:
> x <- c(1, 20, 2, NA, 22)
> order(x)
[1]13254
> x[order(x)]
[1] 1 220 22 NA
> sort(x)
[1] 1 22022

2.8.1 Applying a function to all columns of a data frame

The function sapply () doesthis. It takes as arguments the name of the data frame, and the function that is to
be applied. Here are examples, using the supplied data set rainforest .
> sapply(rainforest, is.factor)
dbh wood bark root rootsk branch species
FALSE FALSE FALSE FALSE FALSE FALSE TRUE
> sapply(rainforest[,-7], range) # The Ffinal column (7) is a factor
dbh wood bark root rootsk branch
[1.] 4 NA NA NA NA NA
[2,] 56 NA NA NA NA NA

The functions mean and range, and several of the other functions noted above, have parametersna. rm. For
example

> range(rainforest$branch, na.rm=T) # Omit NAs, then determine the range

[1]1 4 120

One can specify na. rm=T as a third argument to the function sapply. Thisargument isthen automatically
passed to the function that is specified in the second argument position. For example:

18 source: Ash, J. and Southern, W. 1982: Forest biomass at Butler’s Creek, Edith & Joy London Foundation,
New South Wales, Unpublished manuscript. See also Ash, J. and Helman, C. 1990: Floristics and vegetation
biomass of aforest catchment, Kioloa, south coastal N.S.W. Cunninghamia, 2(2): 167-182.
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> sapply(rainforest[,-7], range, na.rm=T)
dbh wood bark root rootsk branch

[1.] 4 3 8 2 0.3 4

[2,] 56 1530 105 135 24.0 120

Chapter 8 has further details on the use of sapply (). Thereis an example that shows how to use it to count
the number of missing values in each column of data.

2.9 Making Tables

table() makesatable of counts. Specify one vector of values (often afactor) for each table margin that is
required. Here are some examples

> table(rainforest$species) # rainforest is a supplied data set

Acacia mabellae C. fraseri Acmena smithii B. myrtifolia
16 12 26 11
> table(Barley$Year,Barley$Site)
CDGRMUFW
193155 55 55
1932 55 55 55

WARNING: NAsare by default ignored. The action needed to get NAs tabulated under a separate NA category
depends, annoyingly, on whether or not the vector isafactor. If the vector is not afactor, specify
exclude=NULL. If thevector isafactor then it is necessary to generate a new factor that includes “NA™ as a
level. Specify x <- Factor(x,exclude=NULL)

> x_c(1,5,NA,8)

> x <- factor(x)

> X

[111 5 NAS

Levels: 158

> factor(x,exclude=NULL)

[1]1 5 NAS

Levels: 15 8 NA

2.9.1 Numbers of NAs in subgroups of the data

The following gives information on the number of NAsin subgroups of the data:
> table(rainforest$species, !is.na(rainforest$branch))

FALSE TRUE
Acacia mabellae 6 10
C. fraseri 0o 12
Acmena smithii 15 11
B. myrtifolia 1 10

Thus for Acacia mabellae there are 6 NAs for the variable branch (i.e. number of branches over 2cmin
diameter), out of atotal of 16 data values.

2.10 The R Directory Structure

R has a search list where it looks for objects. This can be changed in the course of asession. To get afull list of
these directories, called databases, type:

> search(Q) # This is for version 1.2.3 for Windows
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[1] "-GlobalEnv"  "Autoloads™ "package:base"

At this point, just after startup, the search list consists of the workspace (** .GlobalEnv*™), adlightly
mysterious database with the name Autoloads, and the base package or library. Addition of further libraries
(also called packages) extends thislist. For example:

> library(ts) # Time series library, included with the distribution
> search()
[1] ".GlobalEnv" "package:ts"™ "Autoloads" ""package:base"

2.11 More Detailed | nformation

This chapter has given the minimum detail that seems necessary for getting started. Look in chapters 7 and 8 for
amore detailed coverage of the topicsin this chapter. It may pay, at this point, to glance through chapters 7 and
8 to see what isthere. Remember also to use the R help.

Topics from chapter 7, additional to those covered above, that may be important for relatively elementary uses
of Rinclude:

0 Theentry of patterned data (7.1.3)
o Thehandling of missing valuesin subscripts when vectors are assigned (7.2)

0 Unexpected consequences (e.g. conversion of columns of numeric data into factors) from errorsin data
(7.4.2).

2.11 Exercises

1. For each of the following code sequences, predict the result. Then do the computation:

a) answer <- 0

for (J in 3:5){ answer <- j+answer }
b) answer<- 10

for (J in 3:5){ answer <- j+answer }
c) answer <- 10

for (J in 3:5){ answer <- j*answer }

2. Look up the help for the function prod (), and use prod () to do the calculation in 1(c) above.
Alternatively, how would you expect prod() to work? Try it!

3. Add up all the numbers from 1 to 100 in two different ways: using For and using sum. Now apply the
function to the sequence 1:100. What isits action?

4. Multiply al the numbers from 1 to 50 in two different ways: using for and using prod.

5. The volume of a sphere of radiusr is given by 41r/3. For spheres having radii 3, 4, 5, ..., 20 find the
corresponding volumes and print the results out in atable. Use the technique of section 2.1.5 to construct a data
frame with columns radius and volume.

6. Use sapply () to apply the function is.Factor to each column of the supplied data frame tinting.
For each of the columns that are identified as factors, determine the levels. Which columns are ordered factors?
[Use is.ordered()].
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3. Plotting

Thefunctionsplot(), points(), lines(), text(), mtext(), axis(), identify() etc. form
asuite that plots points, lines and text. To see some of the possibilities that R offers, enter

demo(graphics)

Press the Enter key to move to each new graph.

3.1 plot () and allied functions

The following both plot y against x:
plot(y ~ x) # Use a formula to specify the graph

plot(x, y) #
Obviously x and y must be the same length.

Try
plot((0:20)*pi/10, sin((0:20)*pi/10))
plot((1:30)*0.92, sin((1:30)*0.92))
Comment on the appearance that these graphs present. Isit obvious that these points lie on a sine curve? How

can one make it obvious? (Place the cursor over the lower border of the graph sheet, until it becomes a double-
sided arror. Drag the border in towards the top border, making the graph sheet short and wide.)

Here are two further examples.
attach(elasticband) # R now knows where to find distance & stretch
plot(distance ~ stretch)
plot(ACT ~ Year, data=austpop, type="I1'")
plot(ACT ~ Year, data=austpop, type="b'")

The points() function adds pointsto aplot. The lines() function addslinesto apl otlb?._lThe textQ
function adds text at specified locations. The mtext() function placestext in one of the margins. The
axis() function givesfine control over axisticks and |abels.

Here isafurther possibility
attach(austpop)
plot(spline(Year, ACT), type="I1'") # Fit smooth curve through points
detach(austpop) # In S-PLUS, specify detach(*austpop’™)

3.1.1 Newer plot methods

Above, | described the default plot method. The plot function is a generic function that has special methods for
“plotting” various different classes of object. For example, plotting a data frame gives, for each numeric
variable, anormal probability plot. Plotting the Im object that is created by the use of the Im() modelling
function gives diagnostic and other information that isintended to help in the interpretation of regression results.

Try
plot(hills) # Has the same effect as pairs(hills)

19 Actually these functions differ only in the default setting for the parameter type. The default setting for
points() istype = "p",andfor lines() istype = "I". Explicitly setting type = "p”
causes either function to plot points, type = "I'" gives lines.
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3.2 Fine control — Parameter settings

The default settings of parameters, such as character size, are often adequate. When it is necessary to change
parameter settings for a subsequent plot, the par () function does this. For example,

par(cex=1.25, mex=1.25) # character (cex) & margin (mex) expansion

increases the text and plot symbol size 25% above the default. The addition of mex=1 .25 makes room in the
margin to accommodate the increased text size.

On the first use of par () to make changes to the current device, it is often useful to store existing settings, so
that they can be restored later. For this, specify

oldpar <- par(cex=1.25, mex=1.25)
This stores the existing settings in oldpar, then changes parameters (here cex and mex) as requested. To
restore the original parameter settings at some later time, enter par{oldpar). Hereisan example:

attach(elasticband)

oldpar <- par(cex=1.5, mex=1.5)

plot(distance ~ stretch)

par(oldpar) # Restores the earlier settings

detach(elasticband)

Inside a function specify, e.g.
oldpar <- par(cex=1.25, mex=1.25)
on.exit(par(oldpar))

Typein help(par) to get details of al the parameter settings that are available with par ().

3.2.1 Multiple plots on the one page

The parameter mFrow can be used to configure the graphics sheet so that subsequent plots appear row by row,
one after the other in arectangular layout, on the one page. For a column by column layout, use mFcol
instead. In the example below we present four different transformations of the primates data, in atwo by two
layout:

par(mfrow=c(2,2), pch=16)

data(Animals) # Needed if Animals (MASS library) is not already loaded
attach(Animals)

plot(body, brain)

plot(sgrt(body), sqrt(brain))

plot((body)”™0.1, (brain)”0.1)

plot(log(body), log(brain))

detach(Animals)

par(mfrow=c(1,1), pch=1) # Restore to 1 figure per page

3.2.2 The shape of the graph sheet

Often it is desirable to exercise control over the shape of the graph page, e.g. so that the individual plots are
rectangular rather than square. The R for Windows functionswin.graph() or x11() that set up the
Windows screen take the parameterswidth (in inches), height (in inches) and pointsize (in 1/72 of an
inch). The setting of pointsize (default =12) determines character heights. It isthe relative sizes of these
parameters that matter for screen display or for incorporation into Word and similar programs. Graphs can be
enlarged or shrunk by pointing at one corner, holding down the left mouse button, and pulling.
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3.3 Adding points, lines and text

Hereisasimple example that shows how to use the function text() to add text labelsto the points on a plot.

> primates
Bodywt Brainwt
Potar monkey 10.0 115
Gorilla 207.0 406
Human 62.0 1320
Rhesus monkey 6.8 179
Chimp 52.2 440

Observe that the row names store labels for each rov\’E.I
> attach(primates) # Needed if primates is not already attached.
> plot(Bodywt, Brainwt, xlim=c(5, 250))
> # Specify xlim so that there is room for the labels
> text(x=Bodywt, y=Brainwt, labels=row.names(primates), adj=0)
# adj=0 implies left adjusted text
> detach(primates)

Fig. 7 shows the resullt.
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Figure7: Plot of the primate data, with labels on points

Fig. 7 would be adequate for identifying points, but is not a presentation quality graph. We now show how to
improveit.

20 Row names can be created in several different ways. They can be assigned directly, e.g.
row.names(primates) <- c("Potar monkey","Gorilla",""Human", " Rhesus monkey",'Chimp')

When using read . table() to input data, the parameter row. names is available to specify, by number or
name, a column that holds the row names.
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In Fig. 8 we use the xIab (x-axis) and y lab (y-axis) parameters to specify meaningful axistitles. We move the
labelling to one side of the points by including appropriate horizontal and vertical offsets. We use chw <-
par(Q$cxy[1] to get a 1-character space horizontal offset, and chh <- par(Q$cxy[2] togetal-
character height vertical offset. I’ve used pch=16 to make the plot character a heavy black dot. This helps
make the points stand out against the labelling.
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Figure 8: Improved version of Fig. 7.

Here isthe R code for Fig. 8:
attach(primates)
plot(x=Bodywt, y=Brainwt, pch=16,
xlab=""Body weight (kg)"™, ylab="Brain weight (g)",
xlim=c(5,240), ylim=c(0,1500))
chw <- parQ%$cxy[1]
chh <- parQ%$cxy[2]
text(x=Bodywt+chw, y=Brainwt,
labels=row.names(primates), adj=0)
To place the text to the left of the points, specify
text(x=Bodywt- 0.75*chw, y=Brainwt,
labels=row.names(primates), adj=1)

3.3.1 Size, colour and choice of plotting symbol

For plot() and points() the parameter cex (“character expansion”) controls the size, while col
(“colour™) controls the colour of the plotting symbol. The parameter pch controls the choice of plotting
symbol.
The parameters cex and coll may be used in asimilar way with text(). Try
plot(1, 1, xlim=c(1, 7.5), ylim=c(0,5), type="n"") # Do not plot points
points(1:7, rep(4.5, 7), cex=1:7, col=1:7, pch=0:6)
text(1:7,rep(3.5, 7), labels=paste(0:6), cex=1:7, col=1:7)

The following, added to the plot that results from the above three statements, demonstrates other choices of pch.
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points(1:7,rep(2,7), pch=(0:6)+7) # Plot symbols 7 to 13
text((1:7)+0.25, rep(2,7), paste((0:6)+7)) # Label with symbol number
points(1:7,rep(1,7), pch=(0:6)+14) # Plot symbols 14 to 20
text((1:7)+0.25, rep(1,7), paste((0:6)+14)) # Labels with symbol number

Hereisthe plot:
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Figure9: Different plot symboals, coloursand sizes

A variety of color palettes are available. Hereis afunction that displays some of the possibilities:
view.colours <- function(Q{
plot(1, 1, xlim=c(0,14), ylim=c(0,3), type="n", axes=F, xlab="",ylab=""")
text(1:6, rep(2.5,6), paste(1:6), col=palette(Q[1:6], cex=2.5)
text(10, 2.5, "Default palette", adj=0)
rainchars <- c("'R","0","Y","G","B","1","V"")
text(1:7, rep(1.5,7), rainchars, col=rainbow(7), cex=2.5)
text(10, 1.5, "rainbow(7)", adj=0)
cmtxt <- substring(‘‘cm.colors™, 1:9,1:9)
# Split “cm.colors” into its 9 characters
text(1:9, rep(0.5,9), cmtxt, col=cm.colors(9), cex=3)
text(10, 0.5, "cm.colors(9)", adj=0)
}

To run the function, enter
view.coloursQ)

3.3.2 Adding Text in the Margin

mtext(side, line, text, ..) addstextinthemargin of the current plot. The sidesare numbered
1(x-axis), 2(y-axis), 3(top) and 4.

3.4 I dentification and L ocation on the Figure Region

Two functions are available for this purpose. Draw the graph first, then call one or other of these functions.

= identify() labels points. One positions the cursor near the point that is to be identified, and clicks the
left mouse button.
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= locator() prints out the co-ordinates of points. One positions the cursor at the location for which
coordinates are required, and clicks the left mouse button.

A click with the right mouse button signifies that the identification or location task is complete, unless the setting
of the parameter n isreached first. For identify() the default setting of n is the number of data points,
while for locator () the default setting is n = 500.

3.4.1 identify()

This function requires specification of avector X, avector y, and avector of text strings that are available for
use alabels. The data set Florida hasthe votes for the various Presidential candidates, county by county in
the state of Florida. We plot the vote for Buchanan against the vote for Bush, then invoking identify() so
that we can label selected points on the plot.

attach(florida)
plot(BUSH, BUCHANAN, xlab="Bush”, ylab="Buchanan’)
identify(BUSH, BUCHANAN, County)
detach(florida)
Click to the left or right, and slightly above or below a point, depending on the preferred positioning of the label.

When labelling is terminated (click with the right mouse button), the row numbers of the observations that have
been labelled are printed on the screen, in order.

3.4.2 locator()

Left click at the locations whose coordinates are required
attach(florida) # if not already attached
plot(BUSH, BUCHANAN, xlab="Bush”, ylab="Buchanan’)
locator()
detach(florida)

The function can be used to mark new points (specify type=""p"") or lines (specify type=""1"") or both points
and lines (specify type=""b").

3.5 Plotsthat show the distribution of data values
We discuss histograms, density plots, boxplots and normal probability plots.

3.5.1 Histograms

The shapes of histograms depend on the placement of the breaks, as Fig. 10 illustrates:
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Figure 10: Thetwo graphs show the same data, but with a different choice of breakpoints.

Here is the code used to plot the histograms:

par(mfrow = c(1, 2))

attach(possum)

here <- sex == "f"

hist(totingth[here], breaks = 72.5 + (0:5) * 5, ylim = c(0, 22),
xlab="Total length'", main ="A: Breaks at 72.5, 77.5, ...")

hist(totingth[here], breaks = 75 + (0:5) * 5, ylim = c(0, 22),
xlab="Total length'", main="B: Breaks at 75, 80, ...'")

par(mfrow=c(1,1))

detach(possum)

3.5.2 Density Plots

Density plots, now that they are available, are often a preferred aternative to a histogram. In Fig. 11 the
histograms from Figure 10 are overlaid with a density plot.
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Figure 11: On each of the histograms from Fig. 11 a density plot has been overlaid.

Density plots do not depend on a choice of breakpoints. The choice of width and type of window, controlling
the nature and amount of smoothing, does affect the appearance of the plot. The main effect isto make it more
or less smooth.

The following will give adensity plot:
attach(possum)
plot(density(totingth[here]),type="1'")
detach(possum)

Note that in Fig. 10 the y-axis for the histogram is labelled so that the area of arectangle is the frequency for that
rectangle. To get the plot on the left, specify:

attach(possum)

here <- sex == "f"

dens <- density(totingth[here])

xlim <- range(dens$x)

ylim <- range(dens$y)

hist(totingth[here], breaks = 72.5 + (0:5) * 5, probability =T,

xhim = xBim, ylim = ylim, xlab="Total length™, main=""")
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lines(dens)
detach(possum)

3.5.3 Boxplots

We now make a boxplot of the above data:
attach(possum)
boxplot(totingth[here])
detach(possum)

Fig. 12 adds information that should assist in the interpretation of boxplots.
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Figure 12: Boxplot of female possum lengths, with additional labelling
information.

3.5.4 Normal probability plots

qqgnorm(y) gives anormal probability plot of the elements of y. The points of this plot will lie approximately
on astraight lineif the distribution is Normal. In order to calibrate the eye to recognise plots that indicate non-
normal variation, it is helpful to do several normal probability plots for random samples of the relevant size from
anormal distribution.

x11(width=8, height=6) # This is a better shape for this plot

attach(possum)
here <- sex == "f"
par(mfrow=c(3,4)) # A 3 by 4 layout of plots

y <- totingth[here]

qqnorm(y,xlab=""", ylab="Length", main="Possums')

for(i in 1:11)qqgnorm(rnorm(43),xlab=""",
ylab="Simulated lengths', main="Simulated™)

detach(possum)
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# Before continuing, type dev.offQ

Fig. 13 showsthe plots. Thereisone unusually small value. Otherwise the points for the female possum lengths
are as close to a straight line as in many of the plots for random normal data.
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Figure 13: Normal probability plots. If data are from a normal distribution then points should
fall, approximately, along aline. The plot in thetop left hand corner showsthe 43 lengths of
female possums. The other plotsarefor independent normal random samples of size 43.

Theideaisanimportant one. In order to judge whether data are normally distributed, examine a number of
randomly generated samples of the same size from anormal distribution. It isaway to train the eye.

By default, rnorm() generates random samples from a distribution with mean 0 and standard deviation 1.

3.6 Other Useful Plotting Functions

[21]

For the functions demonstrated here, we use data on the heights of 100 female athletes™.

3.6.1 Scatterplot smoothing

panel . smooth() plots points, then adds a smooth curve through the points. For example:
attach(ais)
here<- sex=="f"

plot(pcBfat[here]~ht[here], xlab = “Height”, ylab = “% Body fat™)

panel .smooth(ht[here], pcBfat[here])
detach(ais)

%I Datarelate to the paper: Telford, R.D. and Cunningham, R.B. 1991: Sex, sport and body-size dependency of
hematology in highly trained athletes. Medicine and Science in Sports and Exercise 23: 788-794.
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3.6.2 Adding lines to plots

Use the function abl ine () for this. The parameters may be an intercept and slope, or a vector that holds the
intercept and slope, or an Im object. Alternatively it is possible to draw a horizontal line (h = <height>), or a
vertical line (v = <ordinate>).

attach(ais)

here<- sex=="f"

plot(pcBfat[here] ~ ht[here], xlab = “Height”, ylab = “% Body fat™)

abline(Im(pcBfat[here] ~ ht[here]))

detach(ais)

3.6.3 Rugplots

By default rug(x) adds, along the x-axis of the current plot, vertical bars showing the distribution of values of
X. It can however be particularly useful for showing the actual values along the side of aboxplot. Fig. 14 shows
aboxplot of the distribution of height of female athletes, with arugplot added on the y-axis.
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Figure 14: Distribution of heights of female athletes.
The barson the left plot show actual data values.

Here isthe code
attach(ais)
here <- sex == "f"
boxplot(ht[here], boxwex = 0.15, ylab = "Height')
rug(ht[here], side = 2)
detach(ais)

The parameter boxwex controls the width of the boxplot.

3.6.4 Scatterplot matrices

Section 2.1.3 demonstrated the use of the pairs() function.

3.6.5 Dotplots

These can be agood alternative to barcharts. They have a much higher information to ink ratio! Try
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data(islands) # 1Ff not already loaded

dotplot(islands) # vector of named numeric values
Unfortunately there are many names, and there is substantial overlap. The following is better, but shrinks the
sizes of the points so that they almost disappear:

dotplot(islands, cex=0.2)

3.7 Plotting Mathematical Symbols

Both text() and mtext() will take an expression rather than atext string. In plot(), either or both of
xlab and ylab can be an expression. Fig. 15 was produced with

plot(x, y, xlab=""Radius”, ylab=expression(Area == pi*r~2))
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Figure 15: They-axislabel isa mathematical expression.

Notice that in expression(Area == pi*r~2), thereisadouble equals sign (“==""), although what will
appear on the plot is Area = pi*r"2, with asingle equals sign. Thereason for thisisthat Area == pi*r~2is
avalid mathematical expression, while Area = pi*r~2isnot.

See help(plotmath) for detailed information on the plotting of mathematical expressions. Thereis afurther
example in chapter 12.

Thefinal plot from
demo(graphics)

shows some of the possihilities for plotting mathematical symbols.

3.8 Guidelinesfor Graphs

Design graphs to make their point tersely and clearly, with a minimum waste of ink. Label as necessary to
identify important features. In scatterplots the graph should attract the eye’s attention to the points that are
plotted, and to important grouping in the data. Use solid points, large enough to stand out relative to other
features, when thereis little or no overlap.

When there is extensive overlap of plotting symbols, use open plotting symbols. Where points are dense,
overlapping points will give ahigh ink density, which is exactly what one wants.

Use scatterplots in preference to bar or related graphs whenever the horizontal axis represents a quantitative
effect.
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Use graphs from which information can be read directly and easily in preference to those that rely on visual
impression and perspective. Thusin scientific papers contour plots are much preferable to surface plots or two-
dimensional bar graphs.

Draw graphs so that reduction and reproduction will not interfere with visual clarity.

Explain clearly how error bars should be interpreted — + SE limits, £ 95% confidence interval, + SD limits, or
whatever. Explain what source of “error(s)’ is represented. It is pointlessto present information on a source of
error that is of little or no interest, for example analytical error when the relevant source of “error’ for
comparison of treatments is between fruit.

Use colour or different plotting symbolsto distinguish different groups. Take care to use colours that contrast.

Thelist of references at the end of this chapter has further comments on graphical and other presentation issues.

3.9 Exercises

1. Plot the graph of brain weight (brain) versus body weight (body) for the data set Animals from the
MASS library. Label the axes appropriately.
[To accessthis data frame, specify library(mass); data(Animals)]

2. Repeat the plot 1, but this time plotting log(brain weight) versus log(body weight). Use the row labelsto label
the points with the three largest body weight values. Label the axes in untransformed units.

3. Repeat the plots 1 and 2, but thistime place the plots side by side on the one page.

4. The data set huron that accompanies these notes has mean July average water surface elevations, in feet,

IGLD (1955) for Harbor Beach, Michigan, on Lake Huron, Station 5014, for 1860-1986E(Alternatively you
can work with the vector LakeHuron from the tslibrary, that has mean heights for 1875-1772 only.)

a) Plot mean.height against year.

b) Use the identify function to determine which years correspond to the lowest and highest mean levels.
That is, type
identify(huron$year,huron$mean._height, labels=huron$year)

and use the left mouse button to click on the lowest point and highest point on the plot. To quit, press
both mouse buttons simultaneoudly.

¢) Asin the case of many time series, the mean levels are correlated from year to year. To see how
each year's mean level is related to the previous year's mean level, use

lag.plot(huron$mean.height)

This plots the mean level at year i against the mean level at year i-1.

5. Check the distributions of head lengths (hdIngth) in the possum™ data set that accompanies these notes.
Compare the following forms of display:

a) ahistogram (hist(possum$hdingth));
b) astem and leaf plot (stem(ggnorm(possum$hdingth));
c) anormal probability plot (qgnorm(possum$hdingth)); and
d) adensity plot (plot(density(possum$hdingth)).
What are the advantages and disadvantages of these different forms of display?

%2 Source: Great Lakes Water Levels, 1860-1986. U.S. Dept. of Commerce, National Oceanic and
AtmosphericAdministration, National Ocean Survey.

2 Datarelate to the paper: Lindenmayer, D. B., Viggers, K. L., Cunningham, R. B., and Donnelly, C. F. 1995.
Morphological variation among populations of the mountain brush tail possum, Trichosurus caninus Ogilby
(Phalangeridae: Marsupialia). Australian Journal of Zoology 43: 449-458.

32



6. Try X <- rnorm(10). Print out the numbersthat you get. Look up the help for rnorm. Now generate a
sample of size 10 from anormal distribution with mean 170 and standard deviation 4.

7. Use mFrow() to set up the layout for a 3 by 4 array of plots. Inthetop 4 rows, show normal probability
plots (section 3.4.2) for four separate “random’ samples of size 10, al from anormal distribution. Inthe middle
4 rows, display plots for samples of size 100. In the bottom four rows, display plots for samples of size 1000.
Comment on how the appearance of the plots changes as the sampl e size changes.

8. The function runi () can be used to generate a sample from a uniform distribution, by default on the
interval 0to 1. Try X <- runif(10), and print out the numbersyou get. Then repeat exercise 6 above, but
taking samples from a uniform distribution rather than from a normal distribution. What shape do the points
follow?

*9. If you find exercise 8 interesting, you might like to try it for some further distributions. For examplex <-
rchisq(10, 1) will generate 10 random values from a chi-squared distribution with degrees of freedom 1.
The statement x <- rt(10,1) will generate 10 random values from a t distribution with degrees of freedom
one. Make normal probability plots for samples of various sizes from these distributions.

10. For the first two columns of the data frame hi 1 1s, examine the distribution using:
(a) histograms
(b) density plots
(c) normal probability plots.

Repeat (@), (b) and (c), now working with the logarithms of the data values.

3.10 References
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Computational and Graphical Statistics.
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Research 35: 121-141.
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4. Lattice graphics, and coplot()

Lattice plots allow the use of the layout on the page to reflect meaningful aspects of data structure. They offer
abilities similar to those in the S-PLUS trellislibrary.

At the time of writing the implementation of the lattice library was incomplete, though already with impressive
functionality. Thelattice library sits on top of the grid library. To use lattice graphics, both these libraries must
beinstalled. Providingitisinstalled, the grid library will be loaded automatically when lattice is loaded.

The older coplot() function that isin the base library has some of same abilities as xyplot( ), but witha
limitation to two conditioning factors or variables only.

4.1 Examplesthat Present Panels of Scatterplots—Using xypl ot ()

The basic function for drawing panels of scatterplotsis xyplot(). Wewill use the data frame tinting
(supplied) to demonstrate the use of xyplot(). Th a are from an experiment that investigated the
effects of tinting of car windows on visual performance™ . The authors were mainly interested in visual
recognition tasks that would be performed when looking through side windows.

In this dataframe, csoa (critical stimulus onset asynchrony, i.e. the time in milliseconds required to recognise
an alphanumeric target), it (inspectiontime,i. e. the time required for a simple discrimination task) and
age arevariables, tint (level of tinting: no, lo, hi) and target (contrast: locon, hicon) are ordered factors,
sex (1 =male, 2 = femae) and agegp (1 = young, in the early 20s; 2 = an older participant, in the early 70s)
arefactors. Fig. 16 shows the style of graph that one can get from xyplot(). The different symbols are different
contrasts.
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Figure 16: csoa versusit, for each combination of females/males and elderly/young.
Thetwo targets (low, + = high contrast) are shown with different symbols.

Inasimplified version of Fig. 16 above, we might plot csoa against it for each combination of sex and
agegp. For thissimplified version, it would be enough to type:

24 Datarelate to the paper: Burns, N. R., Nettlebeck, T., White, M. and Willson, J. 1999. Effects of car window tinting on
visual performance: a comparison of elderly and young drivers. Ergonomics 42: 428-443.
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xyplot(csoa ~ it | sex * agegp, data=tinting) # Simple use of xyplot(Q)
Here is the statement used to get Fig. 16. The two different symbols distinguish between low contrast and high
contrast targets.
xyplot(csoa~it]|sex*agegp, data=tinting, panel=panel.superpose,
groups=target)
If colour isavailable, different colourswill be used for the different groups.

A dtriking feature is that the very high values, for both csoa and it, occur only for elderly males. It is apparent
that the long response times for some of the elderly males occur, as we might have expected, with the low
contrast target. We now put smooth curves through the data, separately for the two target types.

xyplot(csoa~it]|sex*agegp, data=tinting, panel=panel.superpose,
groups=target, type="s"")

The relationship between csoa and it seems much the same for both levels of contrast.

Finally, we do aplot (Fig. 17) that uses different symbols (in black and white) for different levels of tinting. The
longest times are for the high level of tinting.
xyplot(csoa~it]|sex*agegp, data=tinting, panel=panel.superpose,
groups=tint)
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Figure 17: csoa versusit, for each combination of females/males and elderly/young.
Thedifferent levels of tinting (no, +=low, >=high) are shown with different symbols.
An incomplete list of lattice Functions

splom( ~ data.frame) # Scatterplot matrix

bwplot(factor ~ numeric , . .) # Box and whisker plot
qgmath(factor ~ numeric , . .) # normal probability plots
dotplot(factor ~ numeric , . .) # 1-dim. Display
stripplot(factor ~ numeric , . .) # 1-dim. Display
barchart(character ~ numeric , . .)

histogram( ~ numeric , . .)

densityplot( ~ numeric , . .) # Smoothed version of histogram
qgmath( ~ numeric , . .)

splom( ~ dataframe, . .) # Scatterplot matrix

parallel( ~ dataframe, . .) # Parallel coordinate plots
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In each instance, one can add conditioning variables.

4.2 Using copl ot ()

The lattice library makes coplot() largely redundant. It may still be useful if the lattice library is not
available, or if one wantsits particular layout and labelling.

We again use data from the data frame tinting. Hereare two possibilities. All plot csoa against it for
each combination of tint and target.
coplot(csoa~it]tint+target, data=tinting)
coplot(csoa~it|tint+target, pch=as.integer(tinting$agegp),
data=tinting, panel=panel.smooth)
# Different symbols for different agegroups, and show smooth
# We need as.integer(tinting$agegp) because agegp is a factor

The second command uses different colours for the different colours for males and females. The third command
adds a smooth. The fourth command uses different symbols for males and females, and a smooth.

Where conditioning is on a continuous variable, coplot) will break it down into ranges that, if default
settings are used, overlap. The parameter number controls the number of ranges, and over lap controls the
fraction of overlap. For example

coplot(time ~ distance | climb, data=hills, overlap=0.5, number=3)

By default overlap is0.5, i.e. each successive pair of categories have around half their values in common.

The panel function plots what appearsin any panel. Users can supply their own panel function. For an example
of such afunction, examine panel . smooth().

4.3 Exercises

1. The following data gives milk volume (g/day) for smoking and nonsmoking mothersg:I
Smoking Mothers: 621, 793, 593, 545, 753, 655, 895, 767, 714, 598, 693
Nonsmoking Mothers: 947, 945, 1086, 1202, 973, 981, 930, 745, 903, 899, 961

Present the data (i) in side by side boxplots; (ii) using a dotchart form of display.

2. Repeat the plot asin exercise 1, but this time including a scatterplot smooth on each panel.
3. For the possum data set, generate the following plots:
a) histograms of hdlngth —use hist();
b) normal probability plots of hdIngth —use qgnorm();
c) density plots of hdIngth —use plot(density()). Investigate the effect of varying the density
bandwidth (bw).

4. The following exercises relate to the data frame possum that accompani es these notes:

(8 Using the copl ot function, explore the relation between hd Ingth and totIngth, taking into account
sex and Pop.

(b) Construct a contour plot of chest versusbel ly and totingth.

(c) Construct box and whisker plots for hdIngth, using site asafactor.

(d) Construct normal probability plots for hdlgth, for each separate level of sex and Pop. |sthere evidence
that the distribution of hdlgth varies with the level of these other factors.

6. Theframe airqual ity that isin the base library has columns Ozone, Solar .R, Wind, Temp, Month
and Day. Plot 0zone against Solar . R for each of three temperature ranges, and each of three wind ranges.

% Data are from the paper ~ Smoking During Pregnancy and Lactation and Its Effects on Breast Milk Volume"
(Amer. J. of Clinical Nutrition).
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5. Linear (Multiple Regression) Models and Analysis of Variance

5.1 TheModel Formulain Straight Line Regression

We begin with the straight line regression example that appeared earlier, in section 2.1.4. First we plot the data:
plot(distance ~ stretch, data=elasticband)

The code for the regression calculation is:
elastic.Im <- Im(distance ~ stretch, data=elasticband)

Heredistance ~ stretchisamode formula. Other model formulae will appear in the course of this
chapter. Fig. 18 shows the plot:
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Figure 18: Plot of distance versus stretch for the elastic
band data, with fitted least squaresline

The output from the regression isan Im object, which we have called elastic. Im. Now examine a summary
of the regression results. Notice that the output documents the model formula that was used:

> options(digits=4)

> summary(elastic.Im)

Call:

Im(formula = distance ~ stretch, data = elasticband)

Residuals:
1 2 3 4 5 6 7
2.107 -0.321 18.000 1.893 -27.786 13.321 -7.214

Coefficients:

Estimate Std. Error t value Pr(c|t])
(Intercept) -63.57 74.33 -0.86 0.431
stretch 4.55 1.54 2.95 0.032
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Residual standard error: 16.3 on 5 degrees of freedom
Multiple R-Squared: 0.635, Adjusted R-squared: 0.562
F-statistic: 8.71 on 1 and 5 degrees of freedom, p-value: 0.0319

5.2 Regression Objects

An Im object isalist of named elements. Above, we created the object elastic. Im. Here are the names of
its elements:

> names(elastic.Im)

[1] "coefficients" ‘''residuals” "effects" "rank"
[5] "fitted.values™ "assign™ "gr" "df.residual™
[9] "xlevels" "call" "terms" "model"’

Various functions are available for extracting information that you might want from the list. Thisis better than
manipulating the list directly. Examples are:

> coef(elastic.Im)

(Intercept) stretch
-63.571 4.554
> resid(elastic.lIm)
1 2 3 4 5 6 7

2.1071 -0.3214 18.0000 1.8929 -27.7857 13.3214 -7.2143

The function most often used to inspect regression output is summary (). It extracts the information that users
are most likely to want. For example, in section 5.1, we had

summary(elastic.Im)

Thereisaplot method for Im objects that gives the diagnostic information shown in Fig. 19.
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Fig. 19: Diagnostic plot of Im object, obtained by plot(elastic. Im).

To get Fig. 19, type:
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par(mfrow = c(2, 2))
plot(elastic.Im)

By default the first, second and fourth plot use the row names to identify the three most extreme residuals. [If
explicit row names are not given for the data frame, then the row numbers are used.]

5.3 Modd Formulae, and the X Matrix

The model formulafor the elastic band example wasdistance ~ stretch. Themode formulaisarecipe
for setting up the calculations. All the calculations described in this chapter require the use of an model matrix
or X matrix, and avector y of values of the dependent variable. For some of the examples we discuss later, it
helps to know what the X matrix looks like. Details for the elastic band example follow.

The X matrix, with the y-vector alongside, is:

X y
Stretch (mm) Distance (cm)
1 46 148
1 54 182
1 48 173
1 50 166
1 44 109
1 42 141
1 52 166

Essentially, the model matrix relates to the part of the model that appears to the right of the equals sign. The
straight line model is

y=a+bx+residua
which we write as
y=1xa+xxb+resdual

The parameters that are to be estimated are a and b. Fitted values are given by multiplying each column of the
model matrix by its corresponding parameter, i.e. the first column by a and the second column by b, and adding.
Another name is predicted values. The aimisto reproduce, as closely as possible, the values in the y-column.
Theresiduals are the differences between the values in the y-column and the fitted values. Least squares
regression, which is the form of regression that we describe in this course, chooses a and b so that the sum of
squares of theresidualsis as small as possible.

The function model .matrix() printsout the model matrix. Thus:
> model .matrix(distance ~ stretch, data=elasticband)
(Intercept) stretch

1 1 46
2 1 54
3 1 48
4 1 50
5 1 44
6 1 42
7 1 52
attr(,"assign')
[1JO01

Another possibility, with elastic. Imasin section 5.1, is:
model _.matrix(elastic.Im)
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The following are the fitted values and residual s that we get with the estimates of a (= -63.6) and b ( = 4.55) that
result from least squares regression:

X v y y-9
Stretch (mm) (Fitted) (Observed) (Residual)
x 63.6 X455 1x-636+455x Stretch ' | Distance (mm)| | Observed -
_________________________ ! Fitted
1 46 63.6 + 4.55 x 46 = 145.7 148 148-145.7 = 2.3
1 54 63.6+ 4.55 x 54 = 182.1 182 182-182.1=-0.1
1 48 63.6 + 4.55 x 48 = 154.8 173 173-154.8 =
182
1 50 63.6 + 4.55 x 50 = 163.9 166 166-163.9= 2.1
1 44 63.6 + 4.55 x 44 = 136.6 109 109-136.6 = -
276
1 42 63.6+ 455 x 42 = 1275 141 141-127.5=
135
1 52 63.6 + 4.55 x 52 = 173.0 166 166-173.0 = -7.0

Note that we use )7 [pronounced y-hat] as the symbol for predicted values.

We might alternatively fit the simpler (no intercept) model. For this we have
y=xxb+e

where eis arandom variable with mean 0. The X matrix then consists of asingle column, the x’s.

5.3.1 Model Formulae in General
Model formulae take aform such as:
y~x+z :Im, gim,, etc.

y~x + fac + Fac:x :Im,glm, aov, etc. (If Facisafactor and x isavariable, fac:x alowsa
different slope for each different level of fac.)

Model formulae are widely used to set up most of the model calculationsin R.

Notice the similarity between model formulae and the formulae that are used for specifying coplots. Thus, recall
that the graph formula for a coplot that gives aplot of y against x for each different combination of levels of
Facl (across the page) and Fac2 (up the page) is:

y ~ x | facl+fac2

*5.3.2 Manipulating Model Formulae

Model formulae can be assigned, e.g.
formyxz <- formula(y~x+z)

or

formyxz <- formula(“y~x+z’")
The argument to Formulla() can, asjust demonstrated, be atext string. This makes it straightforward to paste
the argument together from components that are stored in text strings. For example

> names(elasticband)

[1] "stretch" ‘‘distance"

> nam <- names(elasticband)
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> formds <- formula(paste(nam[1],"~",nam[2]))
> Im(formds, data=elasticband)

Call:
Im(formula = formds, data = elasticband)

Coefficients:
(Intercept) distance
26.3780 0.1395

Note that graphics formulae can be manipulated in exactly the same way as model formulae.

5.4 Multiple Linear Regression Models

5.4.1 The data frame Rubber

The data set Rubber from the MASSlibrary is from the accelerated testing of tyre rubberg.lThe variables are

loss (the abrasion lossin gm/hr), hard (hardnessin “Shore’ units), and tens (tensile strength in kg/sq m).

We obtain a scatterplot matrix (Fig. 20) thus:
library(mass) # if needed
data(Rubber) # if needed

pairs(Rubber)
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Figure 20: Scatterplot matrix for the Rubber data frame from the
mass library.

There is a negative correlation between loss and hardness. We proceed to regressloss on hard and tens.

26 The original sourceis O.L. Davies (1947) Statistical Methods in Research and Production. Oliver and Boyd,

Table 6.1 p. 119.
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Rubber.Im <- Im(loss~hard+tens, data=Rubber)
> options(digits=3)
> summary(Rubber . Im)

Call:
Im(formula = loss ~ hard + tens, data = Rubber)

Residuals:
Min 1Q Median 3Q Max
-79.38 -14.61 3.82 19.75 65.98

Coefficients:

Estimate Std. Error t value Pr(c|tl])
(Intercept) 885.161 61.752 14.33 3.8e-14
hard -6.571 0.583 -11.27 1.0e-11
tens -1.374 0.194 -7.07 1.3e-07

Residual standard error: 36.5 on 27 degrees of freedom
Multiple R-Squared: 0.84, Adjusted R-squared: 0.828
F-statistic: 71 on 2 and 27 degrees of freedom, p-value: 1.77e-011

The examination of diagnostic plotsis left as an exercise.

5.4.2 Weights of Books

The books to which the data in the data set oddbooks (accompanying these notes) refer were chosen to cover a
wide range of weight to height ratios. Here are the data:
> oddbooks
thick height width weight

1 14 30.5 23.0 1075
2 15 29.1 20.5 940
3 18 27.5 18.5 625
4 23 23.2 15.2 400
5 24 21.6 14.0 550
6 25 23.5 15.5 600
7 28 19.7 12.6 450
8 28 19.8 12.6 450
9 29 17.3 10.5 300
10 30 22.8 15.4 690
11 36 17.8 11.0 400

12 44 13.5 9.2 250

Notice that as thickness increases, weight reduces.
> logbooks <- log(oddbooks) # We might expect weight to be
> # proportional to thick * height * width
> logbooks. Iml<-Im(weight~thick,data=1ogbooks)
> summary(logbooks. Im1)$coef
Estimate Std. Error t value Pr(c|tl])
(Intercept) 9.69 0.708 13.7 8.35e-08
thick -1.07 0.219 -4_.9 6.26e-04

> logbooks. Im2<-Im(weight~thick+height,data=1ogbooks)



> summary(logbooks. Im2)$coef
Estimate Std. Error t value Pr(c|t])

(Intercept) -1.263 3.552 -0.356 0.7303
thick 0.313 0.472 0.662 0.5243
height 2.114 0.678 3.117 0.0124

> logbooks. Im3<-Im(weight~thick+height+width,data=1ogbooks)
> summary(logbooks. Im3)$coef
Estimate Std. Error t value Pr(c|t])

(Intercept) -0.719 3.216 -0.224 0.829
thick 0.465 0.434 1.070 0.316
height 0.154 1.273 0.121 0.907
width 1.877 1.070 1.755 0.117

Soisweight proportional to thick * height * width?

The correlations between thick, height and width are so strong that if one tries to use more than one of
them as a explanatory variables, the coefficients are ill-determined. They contain very similar information, asis
evident from the scatterplot matrix. The regressions on height and width give plausible results, while the
coefficient of the regression on thick is entirely an artefact of the way that the books were selected.

The design of the data collection really isimportant for the interpretation of coefficients from aregression
equation. Even though regression equations from observational data may work quite well for predictive
purposes, the individual coefgﬁilents may be misleading. Thisis more than an academic issue, as the analysesin
Lalonde (1986) demonstrate™ . They had data from experimental “treatment” and “control” groups, and also
from two comparable non-experimental “controls’. The regression estimate of the treatment effect, when
comparison was with one of the non-experimental controls, was statistically significant but with the wrong sign!
The regression should be fitted only to that part of the data where values of the covariates overlap substantially.
Dehejia and Wahba demonstrate the use of scores (“propensities’) that may be used both to identify subsets that
are defensibly comparable. Propensities values are then the only covariate in the equation that estimates the
treatment effect.

5.5 Polynomial and Spline Regression

We show how cal culations that have the same structure as multiple linear regression may be used to model a
curvilinear response. We build up curves from linear combinations of transformed values. A warning isthat the
use of polynomial curves of high degree arein general unsatisfactory. Spline curves, constructed by joining low
order polynomial curves (typically cubics) in such away that the slope changes smoothly, are in general
preferable.

5.5.1 Polynomial Terms in Linear Models

The data frame seed rate@that accompanies these notes gives, for each of a number of different seeding
rates, the number of barley grain per head.

plot(grain ~ rate, data=seedrates) # Plot the data
Fig. 21 shows the data, with fitted quadratic curve:

21 Dehgjia and Wahba (1999) revisit Lalonde' s data, demonstrating the use of a methodology that was able to
reproduce results similar to the experimental results.

%8 Data are from McLeod, C. C. (1982) Effect of rates of seeding on barley grown for grain. New Zealand
Journal of Agriculture 10: 133-136. Summary details are in Maindonald, J. H. (1992).
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Figure 21: Number of grain per head versus seeding r ate,
for the barley seeding rate data, with fitted quadratic curve.

We will need an X-matrix with a column of ones, a column of values of rate, and a column of values of
rate’. For this, both rate and 1 (rate”2) must be included in the mode! formula.

> seedrates.Im2 <- Im(grain ~ rate+l(rate”2), data=seedrates)
> summary(seedrates. Im2)

Call:
Im(formula = grain ~ rate + I(rate”2), data = seedrates)

Residuals:
1 2 3 4 5
0.04571 -0.12286 0.09429 -0.00286 -0.01429

Coefficients:

Estimate Std. Error t value Pr(cltl])
(Intercept) 24.060000 0.455694 52.80 0.00036
rate -0.066686 0.009911 -6.73 0.02138
1(raten2) 0.000171 0.000049 3.50 0.07294

Residual standard error: 0.115 on 2 degrees of freedom

Multiple R-Squared: 0.996, Adjusted R-squared: 0.992

F-statistic: 256 on 2 and 2 degrees of freedom, p-value: 0.0039

> hat <- predict(seedrates.Im2)

> lines(spline(seedrates$rate, hat))

> # Placing the spline fit through the fitted points allows a smooth curve.
> # For this to work the values of seedrates$rate must be ordered.

Again, check the form of the model matrix. Typein:
> model .matrix(grain~rate+l(rate”2),data=seedrates)
(Intercept) rate I(rate”2)
1 1 50 2500
2 1 75 5625
3 1 100 10000



4 1 125 15625

5 1 150 22500
attr(,"assign')
[1J 012

This example demonstrates a way to extend linear models to handle specific types of non-linear relationships.

We can use any transformation we wish to form columns of the model matrix. We could, if we wished, add an
3

x° column.

Once the model matrix has been formed, we are limited to taking linear combinations of columns.

5.5.2 What order of polynomial?

A polynomial of degree 2, i.e. aquadratic curve, looked about right for the above data. How does one check?

One way isto fit polynomials, e.g. of each of degrees 1 and 2, and compare them thus:
> seedrates. Iml<-Im(grain~rate,data=seedrates)
> seedrates. Im2<-Im(grain~rate+l(rate”2),data=seedrates)
> anova(seedrates. Im2,seedrates. Iml)
Analysis of Variance Table

Model 1: grain ~ rate + I(rate”2)
Model 2: grain ~ rate
Res.Df Res.Sum Sq DF Sum Sq F value Pr(cF)
1 2 0.026286
2 3 0.187000 -1 -0.160714 12.228 0.07294

The F-valueislarge, but on this evidence there are too few degrees of freedom to make a totally convincing case
for preferring a quadratic to aline. However the paper from which these data come gives an independent
estimate of the error mean square (0.17 on 35 d.f.) based on 8 replicate results that were averaged to give each
value for number of grains per head. If we compare the change in the sum of squares (0.1607, on 1 df) with a
mean square of 0.17% (35 df), the F-value is now 5.4 on 1 and 35 degrees of freedom, and we have p=0.024 .
Theincrease in the number of degrees of freedom more than compensates for the reduction in the F-statistic.

> # However we have an independent estimate of the error mean

> # square. The estimate is 0.17~2, on 35 df.

> 1-pf(0.16/0.17~2, 1, 35)

[1] 0.0244
Finally note that R* was 0.972 for the straight line model. This may seem good, but given the accuracy of these
data it was not good enough! The statistic is an inadequate guide to whether a model is adequate. Even for any
one context, R? will in general increase as the range of the values of the dependent variable increases. (R%is

larger when there is more variation to be explained.) A predictive model is adequate when the standard errors of
predicted values are acceptably small, not when R? achieves some magic threshold.

5.5.3 Pointwise confidence bounds for the fitted curve
Here is code that will give pointwise 95% confidence bounds. Note that these do not combineto give a
confidence region for the total curve! The construction of such aregion is amuch more complicated task!
plot(grain ~ rate, data = seedrates, pch = 16, xlim = ¢(50, 175), ylim
= ¢(15.5, 22),xlab="Seeding rate",ylab="Grains per head')
new.df <- data.frame(rate = c((4:14) * 12.5))
seedrates.Im2 <- Im(grain ~ rate + I(rate”2), data = seedrates)
pred2 <- predict(seedrates.Im2, newdata = new.df, interval="confidence')
hat2 <- data.frame(fit=pred2[,"fit'"], lower=pred2[,"lwr'],
upper=pred2[,"upr])
attach(new.df)
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lines(rate, hat2$fit)
lines(rate,hat2$lower, Ity=2)
lines(rate, hat2$upper, Ity=2)
detach(new.df)

The extrapolation has deliberately been taken beyond the range of the data, in order to show how the confidence
bounds spread out. Confidence bounds for afitted line spread out more slowly, but are even less believable!

5.5.4 Spline Terms in Linear Models
By now, readers of this document will be used to the idea that it is possible to use linear models to fit terms that
may be highly nonlinear functions of one or more of the variables. The fitting of polynomial functionswas a
simple example of this. Spline functions variables extend this idea further. The splinesthat | demonstrate are
constructed by joining together cubic curves, in such away the joins are smooth. The places where the cubics
join are known as “knots'. It turns out that, once the knots are fixed, and depending on the class of spline curves
that are used, spline functions of avariable can be constructed as alinear combination of basis functions, where
each basis function is a transformation of the variable.
The data frame cars isin the base library.

> data(cars)
plot(dist~speed,data=cars)
library(splines)
cars. Im<-Im(dist~bs(speed) ,data=cars) # By default, there are no knots
hat<-predict(cars.Im)
lines(cars$speed,hat, Ity=3) # NB assumes values of speed are sorted
cars.Im5 <- Im(dist~-bs(speed,5),data=cars)

# try for a closer fit (1 knot)

> cib<-predict(cars. Im5, interval="confidence",se.fit=T)
> names(cib5)
[1] "Ffit" "se.fit" df "residual .scale”
> lines(cars$speed,ci5$fit[,"fit"])
> lines(cars$speed,ci5$fit[,"lwr"], Ity=2)
> lines(cars$speed,ci5$fit[,  upr’], Ity=2)

V V. V VvV VvV V

5.6 Using Factorsin R Models

Factors are crucia for specifying R models that include categorical ar-factor” variables,. Consider datafrom an

experiment that compared houses with and without cavity insulation™. While one would not usually handle
these calculations using an Im model, it makes a simple example to illustrate the choice of a baseline level, and a
set of contrasts. Different choices, although they fit equivalent models, give output in which some of the
numbers are different and must be interpreted differently.

We begin by entering the data from the command line;
insulation <- factor(c(rep(“'without", 8), rep(“with", 7)))
# 8 without, then 7 with
# ~with” precedes “without” in alphanumeric order, & is the baseline
kwh <- c(10225, 10689, 14683, 6584, 8541, 12086, 12467,
12669, 9708, 6700, 4307, 10315, 8017, 8162, 8022)

To formulate this as a regression model, we take kWh as the dependent variable, and the factor insulation as the
explanatory variable.

29 Data are from Hand, D. J,; Daly, F.; Lunn, A. D.; Ostrowski, E., eds. (1994). A Handbook of Small Data
Sets. Chapman and Hall.
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insulation <- factor(c(rep("without”, 8), rep("with", 7)))
# 8 without, then 7 with

kWwh <- c(10225, 10689, 14683, 6584, 8541, 12086, 12467,
12669, 9708, 6700, 4307, 10315, 8017, 8162, 8022)
insulation_Im <- Im(kWh ~ insulation)
summary(insulation.Im, corr=F)

V V + VvV VvV V

Call:
Im(formula = kWh ~ insulation)
Residuals:

Min 1Q Median 3Q Max

-4409 -979 132 1575 3690

Coefficients:

Estimate Std. Error t value Pr(c|tl])
(Intercept) 7890 874 9.03 5.8e-07
insulation 3103 1196 2.59 0.022

Residual standard error: 2310 on 13 degrees of freedom
Multiple R-Squared: 0.341, Adjusted R-squared: 0.29
F-statistic: 6.73 on 1 and 13 degrees of freedom, p-value: 0.0223

The p-value is 0.022, which may be taken to indicate (p < 0.05) that we can distinguish between the two types of
houses. But what does the “intercept” of 7890 mean, and what does the value for “insulation” of 3103 mean?
To interpret this, we need to know that the factor levels are, by default, taken in alphabetical order, and that the
initia level istaken as the baseline. So wiith comes before wiithout, and with isthe baseline. Hence:

Average for Insulated Houses = 7980
To get the estimate for uninsulated houses take 7980 + 3103 = 10993.
The standard error of the difference is 1196.

5.6.1 The Model Matrix

It often helps to keep in mind the model matrix or X matrix. Here arethe X and the y that are used for the
calculations. Note that the first eight data values were al withouts:

Contrast kWh
x 7980 x 3103 Add to get Compare with Residual
1 1 7980+3103=10993 10225 10225-10993
1 1 7980+3103=10993 10689 10689-10993
1 0 7980+0 9708 9708-7980
1 0 7980+0 6700 6700-7980

Typein
model .matrix(kWh~insulation)

and check that it gives the above model matrix.
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*5.6.2 Other Choices of Contrasts
There are other ways to set up the X matrix. Intechnical jargon, there are other choices of contrasts. One
obvious alternative is to make without thefirst factor level, so that it becomes the baseline. For this, specify:
insulation <- relevel(insulation, baseline="without')
# Make “without” the baseline
Another possibility isto use what are called the “sum” contrasts. With the “sum” contrasts the baseline is the
mean over al factor levels. The effect for the first level is omitted; the user@s to calculate it as minus the sum
of the remaining effects. Here isthe output from use of the “sum’ contrasts™ :
> options(contrasts = c('contr.sum”™, "contr.poly"), digits = 2)
# Try the “sum” contrasts
> insulation <- factor(insulation, levels=c("without™, "with™))
# Make “without® the baseline
> insulation.Im <- Im(kWwh ~ insulation)
> summary(insulation.Im, corr=F)

Call:
Im(formula = kWh ~ insulation)

Residuals:
Min 1Q Median 3Q Max
-4409 -979 132 1575 3690

Coefficients:

Estimate Std. Error t value Pr(c|t])
(Intercept) 9442 598 15.78 7.4e-10
insulation 1551 598 2.59 0.022

Residual standard error: 2310 on 13 degrees of freedom
Multiple R-Squared: 0.341, Adjusted R-squared: 0.29
F-statistic: 6.73 on 1 and 13 degrees of freedom, p-value: 0.0223

Here isthe interpretation:
average of (mean for “without”, “mean for with”) = 9442
To get the estimate for uninsulated houses (the first level), take 9442 + 1551 = 10993
The “effects’ sumto one. So the effect for the second level (‘with') is-1551. Thus
to get the estimate for insulated houses (the first level), take 9442 - 1551 = 7980.
The sum contrasts are sometimes called “analysis of variance” contrasts.

Y ou can set the choice of contrasts for each factor separately, with a statement such as:
insulation <- C(insulation, contr=treatment)

Also available are the Helmert contrasts. These are @at all intuitive and rarely helpful, even though S-PLUS
uses them as the default. Novices should avoid them™.

%0 The second stri ng element, i.e. ""contr.poly", isthe default setting for factors with ordered levels. [One
uses the function ordered() to create ordered factors.]

3 The interpretation of the helmert contrasts is simple enough when there are just two levels. With >2 levels,
the helmert contrasts give parameter estimates which in general do not make alot of sense, basically because the
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5.7 Multiple Lines— Different Regression Linesfor Different Species

The terms that appear on the right of the model formula may be variables or factors, or interactions between
variables and factors, or interactions between factors. Here we take advantage of thisto fit different linesto
different subsets of the data.

In the example that follows, we had weights for a porpoise species (Sellena styx) and for a dolphin species
(Delphinus delphis). We take x; to be avariable that has the value O for Delphinus delphis, and 1 for Sellena
styx. We take x, to be body weight. Then possibilities we may want to consider are:

A: Asingleline: y=a+bx,

B: Two pardlel lines: y=a; +a x; + b x,
[For thefirst group (Stellena styx; x; = 0) the constant term is a;, while for the second group (Delphinus
delphis; x; = 1) the constant termisa; + a,.]

C: Two separaIeIin%: Y=g tayX + bl Xo + b2 X1 X
[For the first group (Delphinus delphis; x; = 0) the constant term is a; and the slope isb,. For the second group
(Sellena styx; x; = 1) the constant termis a; + ay, and the slopeisb; + b,.]

We show results from fitting the first two of these models, i.e. A and B:

> plot(logheart ~ logweight, data=dolphins) # Plot the data
> options(digits=4)

> cet.Iml <- Im(logheart ~ logweight, data = dolphins)

> summary(cet.Iml, corr=F)

Call:

Im(formula = logheart ~ logweight, data = dolphins)

Residuals:
Min 1Q Median 3Q Max
-0.15874 -0.08249 0.00274 0.04981 0.21858

Coefficients:

Estimate Std. Error t value Pr(c|tl])
(Intercept) 1.325 0.522 2.54 0.024
logweight 1.133 0.133 8.52 6.5e-07

Residual standard error: 0.111 on 14 degrees of freedom
Multiple R-Squared: 0.838, Adjusted R-squared: 0.827
F-statistic: 72.6 on 1 and 14 degrees of freedom, p-value: 6.51e-007

For model B (paralld lines) we have
> cet.Im2 <- Im(logheart ~ factor(species) + logweight, data=dolphins)

Check what the model matrix looks like:

baseline keeps changing, to the average for all previous factor levels. Y ou do better to use either the treatment
contrasts, or the sum contrasts. With the sum contrasts the baseline is the overall mean.

S-PLUS makes helmert contrasts the default, perhaps for reasons of computational efficiency. Thiswas an
unfortunate choice.
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> model .matrix(cet. Im2)
(Intercept) factor(species) logweight

1 1 1 3.555
2 1 1 3.738
8 1 0 3.989
16 1 0 3.951
attr(,"assign')

[1J 012

attr(,"contrasts')

[1] "contr.treatment"
Enter summary(cet. Im2) to get an output summary, and plot(cet. Im2) to plot diagnostic information
for this model.
For model C, the statement is:

> cet.Im3 <- Im(logheart ~ factor(species) + logweight +

Factor(species): logweight, data=dolphins)

Check what the model matrix looks like:

> model .matrix(cet. Im3)

(Intercept) factor(species) logweight factor(species).logweight

1 1 1 3.555 3.555
8 1 0 3.989 0.000
16 1 0 3.951 0.000
attr(,"assign')

[1JO0123

attr(,"contrasts')$"factor(species)"
[1] "contr.treatment"

Now see why one should not waste time on model C.
> anova(cet.Iml,cet.Im2,cet. Im3)
Analysis of Variance Table

Model 1: logheart ~ logweight

Model 2: logheart ~ factor(species) + logweight

Model 3: logheart ~ factor(species) + logweight + factor(species):logweight
Res.DFf Res.Sum Sq DFf Sum Sq F value Pr(GF)

1 14 0.1717
2 13 0.0959 1 0.0758 10.28 0.0069
3 12 0.0949 1 0.0010 0.12 0.7346

5.8 aov models (Analysis of Variance)

The class of modelsthat can be directly fitted as aov modelsis quite limited. In essence, aov provides, for data
where all combinations of factor levels have the same number of observations, another view of an Im model.
One can however specify the error term that is to be used in testing for treatment effects. See section 5.8.2
below.

By default, R uses the treatment contrasts for factors, i.e. the first level istaken asthe baseline or reference level.
A useful functionis relevel (). The parameter ref can be used to set the level that you want as the
reference level.
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5.8.1 Plant Growth Example
Here is a simple randomised block design:

> data(PlantGrowth) # From the MASS library

> attach(PlantGrowth)

> boxplot(split(weight,group)) # Looks OK
dataQ
PlantGrowth.aov <- aov(weight~group)
summary(PlantGrowth.aov)

DFf Sum Sq Mean Sq F value Pr(cF)

group 2 3.7663 1.8832 4.8461 0.01591
Residuals 27 10.4921 0.3886
> summary. Im(PlantGrowth.aov)

vV V V

Call:
aov(formula = weight ~ group)

Residuals:
Min 1Q Median 3Q Max
-1.0710 -0.4180 -0.0060 0.2627 1.3690

Coefficients:

Estimate Std. Error t value Pr(c|t])
(Intercept) 5.0320 0.1971 25.527 <2e-16
grouptrtl -0.3710 0.2788 -1.331 0.1944
grouptrt2 0.4940 0.2788 1.772 0.0877

Residual standard error: 0.6234 on 27 degrees of freedom
Multiple R-Squared: 0.2641, Adjusted R-squared: 0.2096
F-statistic: 4.846 on 2 and 27 degrees of freedom, p-value: 0.01591

> help(cabbages)

> data(cabbages) # From the MASS library
> names(cabbages)
[1] "Cult™ ‘"Date" 'HeadWt" "VitC"

> coplot(HeadWt~VitC|]Cult+Date,data=cabbages)

Examination of the plot suggests that cultivars differ greatly in the variability in head weight. Variation in the
vitamin C levels seemsrelatively consistent between cultivars.

> VitC.aov<-aov(VitC~Cult+Date,data=cabbages)
> summary(VitC.aov)

Df Sum Sq Mean Sq F value Pr(cF)
Cult 1 2496.15 2496.15 53.0411 1.179e-09
Date 2 909.30 454.65 9.6609 0.0002486
Residuals 56 2635.40 47.06



*5.8.2 Shading of Kiwifruit Vines

These data (yjelds in kilograms) are in the data frame kiwi shade that accompanies these notes. They are from

an experiment  where there were four treatments - no shading, shading from August to December, shading from
December to February, and shading from February to May. Each treatment appeared once in each of the three
blocks. The northernmost plots were grouped in one block because they were similarly affected by shading from
the sun. For the remaining two blocks shelter effects, in one case from the east and in the other case from the
west, were thought more important. Results are given for each of the four vinesin each plot. 1n experimental
design parlance, the four vines within a plot constitute subplots.

The block:shade mean square (sum of squares divided by degrees of freedom) provides the error term. (If
thisis not specified, one still gets a correct analysis of variance breakdown. But the F-statistics and p-values will
be wrong.)

> kiwishade$shade <- relevel(kiwishade$shade, ref="none')

> ## Make sure that the level “none” (no shade) is used as reference

> kiwishade.aov<-aov(yield~block+shade+Error(block:shade) ,data=kiwishade)
> summary(kiwishade.aov)

Error: block:shade

DFf Sum Sq Mean Sq F value Pr(F)
block 2 172.35 86.17 4.1176 0.074879
shade 3 1394.51 464.84 22.2112 0.001194
Residuals 6 125.57 20.93

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
Residuals 36 438.58 12.18
> coef(kiwishade.aov)
(Intercept) :
(Intercept)
96.5327

block:shade :
blocknorth blockwest shadeAug2Dec shadeDec2Feb shadeFeb2May
0.993125 -3.430000 3.030833 -10.281667 -7.428333

Within :
numeric(0)

5.9 Exercises

1. Here are two sets of data that were obtained the same apparatus, including the same rubber band, as the data
frame elasticband. For the data set elasticl, the values are:

stretch (mm): 46, 54, 48, 50, 44, 42, 52

distance (cm): 183, 217, 189, 208, 178, 150, 249.

For the data set elastic2, thevauesare:
stretch (mm): 25, 45, 35, 40, 55, 50 30, 50, 60
distance (cm): 71, 196, 127, 187, 249, 217, 114, 228, 291.

% Datarelate to the paper: Snelgar, W.P., Manson. P.J., Martin, P.J. 1992. Influence of time of shading on
flowering and yield of kiwifruit vines. Journal of Horticultural Science 67: 481-487.

Further details, including a diagram showing the layout of plots and vines and details of shelter, arein
Maindonald (1992). The two papers have different shorthands (e.g. Sept-Nov versus Aug-Dec) for describing
the time periods for which the shading was applied.



Using a different symbol and/or a different colour, plot the data from the two data frames elasticl and
elastic2 onthesame graph. Do the two sets of results appear consistent.

2. For each of the data setselasticl and elastic2, determine the regression of stretch on distance. In
each case determine (i) fitted values and standard errors of fitted values and (ii) the R? statistic. Compare the
two sets of results. What is the key difference between the two sets of data?

3. Use the method of section 5.7 to determine, formally, whether one needs different regression lines for the two
dataframeselasticl and elastic2.

4. Using the data frame cars (in the base library), plot distance (i.e. stopping distance) versus speed. Fit
alineto this relationship, and plot the line. Then try fitting and plotting a quadratic curve. Does the quadratic
curve give a useful improvement to the fit? If you have studied the dynamics of particles, can you find a theory
that would tell you how stopping distance might change with speed?

5. Using the dataframe hi l Is (in library MASS), regress time on distance and climb. What can you
learn from the diagnostic plots that you get when you plot the Im object? Try aso regressing log(time) on
log(distance) and log(climb). Which of these regression equations would you prefer?

6. Using the data frame beams (in the data sets accompanying these notes), carry out a regression of
strength on SpecificGravity and Moisture. Carefully examine the regression diagnostic plot,
obtained by supplying the name of the Im object as the first parameter to plot(). What does thisindicate?

7. Type
hosp<-rep(c(”’RNC”,”Hunter”,”Mater’), 2)
hosp
Thosp<-Ffactor(hosp)
levels(fthosp)

Now repest the steps involved in forming the factor fhosp, this time keeping the factor levels in the order RNC,
Hunter, Mater.

Use contrasts(fthosp) to form and print out the matrix of contrasts. Do this using helmert contrasts,
treatment contrasts, and sum contrasts. Using an outcome variable

y <- ¢(2,5,8,10,3,9)

fit the model Im(Cy~Fhosp), repeating the fit for each of the three different choices of contrasts. Comment on
what you get.

For which choice(s) of contrasts do the parameter estimates change when you re-order the factor levels?

8. In section 5.7 check the form of the model matrix (i) for fitting two paralel lines and (ii) for fitting two
arbitrary lines when one uses the sum contrasts. Repeat the exercise for the helmert contrasts.

9. Inthe data set cement (MASS|ibrary), examine the dependence of y (amount of heat produced) on x1, x2, x3
and x4 (which are proportions of four constituents). Begin by examining the scatterplot matrix. Asthe
explanatory variables are proportions, do they require transformation, perhaps by taking log(x/(100-x))? What
alternative strategies one might use to find an effective prediction equation?

10. Inthe data set pressure (base library), examine the dependence of pressure on temperature.
[Transformation of temperature makes sense only if one first converts to degrees Kelvin. Consider
transformation of pressure. A logarithmic transformation is too extreme; the direction of the curvature changes.
What family of transformations might one try?

11. Modify the code in section 5.5.3 to fit: (a) aline, with accompanying 95% confidence bounds, and (b) a
cubic curve, with accompanying 95% pointwise confidence bounds. Which of the three possibilities (line,
quadratic, curve) is most plausible? Can any of them be trusted?

*12. Repeat the analysis of the kiwishade data (section 5.8.2), but replacing Error(block: shade) with
block:shade. Comment on the output that you get from summary(). To what extent isit potentialy
misleading? Also do the analysis where the block: shade term is omitted altogether. Comment on that
analysis.
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6. Multivariate and Tree-Based Methods

6.1 Multivariate EDA, and Principal Components Analysis

Principal components analysisis often a useful exploratory tool for multivariate data. Theideaisto replace the
initial set of variables by a small number of “principal components’ that together may explain most of the
variation in the data. Thefirst principal component is the component (linear combination of the initial variables)
that explains the greatest part of the variation. The second principal component is the component that, among
linear combinations of the variables that are uncorrelated with the first principal component, explains the
greatest part of the remaining variation, and so on.

The measure of variation used is the sum of the variances of variables, perhaps after scaling the variables so that
they each have variance one. An analysis that works with the unscaled variables, and hence with the variance-
covariance matrix, gives a greater weight to variables that have a large variance. The common alternative —
scaling variables so that they each have variance equal to one — is equivalent to working with the correlation
matrix.

With biological measurement data, it is usually desirable to begin by taking logarithms. The standard deviations
then measure the logarithm of relative change. Because all variables measure much the same quantity (i.e.
relative variability), and because the standard deviations are typically fairly comparable, scaling to give equa
variances is unnecessary.

The data set possum that accompanies these notes has nine morphometric measurements on ea(@f 102

mountain brushtail possums, trapped at seven sites from southern Victoriato central Queensland™. It is good
practice to begin by examining relevant scatterplot matrices. This may draw attention to gross errorsin the data.
A plot in which the sites and/or the sexes are identified will draw attention to any very strong structurein the
data. For example one site may be quite different from the others, for some or all of the variables.

Taking logarithms of these data does not make much difference to the appearance that they present when plotted.
Thisis because the ratio of largest to smallest value isrelatively small, never more than 1.6, for all variables.
Here are some of the scatterplot matrix possibilities:
pairs(possum[,6:14], col=palette()[as.integer(possum$sex)])
pairs(possum[,6:14], col=palette()[as.integer(possum$site)])
here<-lis.na(possum$footlgth) # We need to exclude missing values
print(sum(!here)) # Check how many values are missing

We now look at particular views of the data that we get from a principal components analysis:
library(mva) # Load x-variate analysis library
possum.prc <- princomp(log(possum[here,6:14])) # Principal components
# Print scores on second pc versus scores on first pc,

# by populations and sex, identified by site
coplot(possum.prc$scores[,2] ~
possum.prc$scores[, 1] | possum$Pop[here]+possum$sex[here],
col=palette()[as. integer(possum$site)])

Fig. 22, which uses different plot symbols for different sites, used the code:
coplot(possum.prc$scores[,2] ~
possum.prc$scores[, 1] | possum$Pop[here]+possum$sex[here],
pch=as. integer(possum$site))

3 Datardate to the paper: Lindenmayer, D. B., Viggers, K. L., Cunningham, R. B., and Donnelly, C. F. 1995.
Morphological variation among columns of the mountain brushtail possum, Trichosurus caninus Ogilby
(Phalangeridae: Marsupiala). Australian Journal of Zoology 43: 449-458.
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Given : possum$Pop[here]
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Fig. 22: Second principal component versus first principal component,

by population and by sex, for the possum data.

6.2 Cluster Analysis
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Given : possum$sex| here]

In the language of Ripley (1996)E,|cl uster analysisis aform of unsupervised classification. It is"“unsupervised”

because the clusters are not known in advance. There are two types of algorithms — algorithms based on
hierachical agglomeration, and algorithms based on iterative relocation.

In hierarchical agglomeration each observation starts as a separate group. Groups that are “close” to one

another are then successively merged. The output yields a hierarchical clustering tree that shows the

rel ationships between observations and between the clusters into which they are successively merged. A
judgement is then needed on the point at which further merging is unwarranted.

In iterative relocation, the algorithm starts with an initial classification, that it then triesto improve. How does

one get the initia classification? Typicaly, by aprior use of a hierarchical agglomeration algorithm.

The mva library has the cluster analysisroutines. The function dist() calculates distances. The function hclust()
does hierarchical agglomerative clustering, with a choice of methods available. The function kmeans() (k-means

clustering) implements iterative relocation.

6.3 Discriminant Analysis

We start with datathat are classified into several groups, and want arule that will allow us to predict the group

to which a new data value will belong. In the language of Ripley (1996), our interest isin supervised
classification. For example, we may wish to predict, based on prognostic measurements and outcome

34 References are at the end of the chapter.
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information for previous patients, which future patients will remain free of disease symptoms for twelve months

or more.

Here are calculations for the possum data frame, using the Ida() function from the Venables & Ripley MASS

library. Our interest isin whether it is possible, on the basis of morphometric measurements, to distinguish
animals from different sites. A cruder distinction is between populations, i.e. sitesin Victoria (an Australian
state) as opposed to sites in other states (New South Wales or Queendland). Because it has little on the
distribution of variable values, | have not thought it necessary to take logarithms. | discuss this further below.

> library(mass) # Only if not already attached.
> here<- l!is.na(possum$footlgth)

> possum.lda <- lda(site ~ hdIngth+skul lw+totlngth+
taillgth+footlgth+earconch+eye+chest+bel ly,data=possum,
subset=here)

options(digits=4)

possum.lda$svd # Examine the singular values

[1] 15.7578 3.9372 3.1860 1.5078 1.1420 0.7772

>

> plot(possum.lda, dimen=3)

> # Scatterplot matrix for scores on 1st 3 canonical variates, as in Fig.23
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Figure 23: Scatterplot matrix of first three canonical variates.

The singular values are the ratio of between to within group sums of squares, for the canonical variatesin turn.

Clearly canonical variates after the third will have little if any discriminatory power. One can use
predict. Ida() to get (among other information) scores on the first few canonica variates.

Note that there may be interpretative advantages in taking logarithms of biological measurement data. The
standard against which patterns of measurement are commonly compared is that of allometric growth, which
implies alinear relationship between the logarithms of the measurements. Differences between different sites
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are then indicative of different patterns of allometric growth. The reader may wish to repeat the above analysis,
but working with the logarithms of measurements.

Where there are two groups, logistic regression is often effective. A source of code for handling more general
supervised classification problemsis Hastie and Tibshirani’ smda (mixture discriminant analysis) library. There
isabrief overview of thislibrary in the Venables and Ripley "Complements’, referred to in section 13.2..

6.4 Decision Tree models (Tree-based models)

We include tree-based classification here because it is a multivariate supervised classification, or discrimination,
method. A tree-based regression approach is available for use for regression problems. Tree-based methods
seem more suited to binary regression and classification than to regression with an ordinal or continuous
dependent variable.

Tree-based models, also known as “ Classification and Regression Trees’ (CART), may be suitable for
regression and classification problems when there are extensive data. One advantage of such methods s that
they automatically handle non-linearity and interactions. Output includes a“decision tree” that isimmediately
useful for prediction.

library(rpart)

data(fgl) # Forensic glass fragment data; from MASS library

glass.tree <- rpart(type ~ RI+Na+Mg+Al+Si+K+Ca+Ba+Fe, data=fgl)

plot(glass.tree); text(glass.tree)

summary(glass.tree)

To use these models effectively, you also need to know about approaches to pruning trees, and about cross-
validation. Methods for reduction of tree complexity that are based on significance tests at each individual node
(i.e. branching point) typically choose trees that over-predict.

The Atkinson and Therneau rpart (recursive partitioning) library is closer to CART than isthe S-PLUS tree
library. It integrates cross-validation with the algorithm for forming trees.

6.5 Exercises

1. Using the data set painters (MASSlibrary), apply principal components analysis to the scores for
Composition, Drawing, Colour, and Expression. Examine the loadings on the first three principal
components. Plot a scatterplot matrix of the first three principal components, using different colours or symbols
to identify the different schools.

2. The data set Cars93 isin the MASSlibrary. Using the columns of continuous or ordinal data, determine
scores on the first and second principal components. Investigate the comparison between (i) USA and non-USA
cars, and (ii) the six different types (Type) of car. Now create a new data set in which binary factors become
columns of 0/1 data, and include these in the principal components analysis.

3. Repeat the calculations of exercises 1 and 2, but thistime using the function Ida() from the MASSibrary to
derive canonical discriminant scores, asin section 6.3.

4. The MASS library has the Aids2 data set, containing de-identified data on the survival status of patients
diagnosed with AIDS before July 1 1991. Use tree-based classification (rpart()) to identify major
influences on survival.

5. Investigate discrimination between plagiotropic and orthotropic species in the data set IeafshapeE.|
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*7. R Data Structures

7.1 Vectors
$s1

Recall that vectors may have mode logical, numeric or character™ .

7.1.1 Subsets of Vectors
Recall (section 2.6.2) two common ways to extract subsets of vectors:

1. Specify the numbers of the elementsthat are to be extracted. One can use negative numbers to omit
elements.

2. Specify avector of logical values. The elements that are extracted are those for which the logical value
isT. Thus suppose we want to extract values of x that are greater than 10.
The following demonstrates a third possibility, for vectors that have named elements:
> c(Andreas=178, John=185, Jeff=183)[c("'John","Jeff")]
John Jeff
185 183

A vector of names has been used to extract the el ements.

7.1.2 Patterned Data
Use 5:15 to generate the numbers 5, 6, ..., 15. Entering 15:5 will generate the sequence in the reverse order.

To repeat the sequence (2, 3, 5) four times over, enter rep(c(2,3,5), 4) thus
> rep(c(2,3,5),4)
[1] 235235235235
>

If instead one wants four 2s, then four 3s, then four 5s, enter rep(c(2,3,5), c(4,4,4)).
> rep(c(2,3,5),c(4,4,4)) # An alternative is rep(c(2,3,5), each=4)
[11] 222233335555

Note further that, in place of c(4,4,4) we could write rep(4,3). So afurther possibility isthat in place of
rep(c(2,3,5), c(4,4,4)) wecouldenter rep(c(2,3,5), rep(4,3)).

In addition to the above, note that the function rep() has an argument length.out, meaning “keep on
repeating the sequence until the length is length.out.”

7.2 Missing Values

In R, the missing value symbol isNA. Any arithmetic operation or relation that involves NA generates an NA.
This appliesalso to therelations <, <=, >, >=, ==, 1=, Thefirst four compare magnitudes, == tests for equality,
and I=testsfor inequality. Unlessyou think carefully about the implications for working with expressions that
include NAs, you may not get the results that you expect. Specifically, note that x==NA generates NA.

Be sureto use is.na(x) to test which values of x are NA. Asx==NA givesavector of NAs, you get no
information at all about X. For example

> x <- ¢(1,6,2,NA)

% g ow, we will meet the notion of “class’, which isimportant for some of the more sophisticated language
features of R. Thelogical, numeric and character vectorsjust given have classNULL, i.e. they have no class.
There are special types of numeric vector which do have a class attribute. Factors are the most important
example. Although often used as a compact way to store character strings, factors are, technically, numeric
vectors. The class attribute of afactor has, not surprisingly, the value “factor”.
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> is.na(x) # TRUE for when NA appears, and otherwise FALSE
[1] FALSE FALSE FALSE TRUE

> x==NA # All elements are set to NA
[1] NA NA NA NA

> NA==NA

[1] NA

WARNING: Thisis chiefly for those who may move between R and S-PLUS. In important respects, R's
behaviour with missing values is more intuitive than that of S-PLUS. Thusin R

y[x>2] <- x[x>2]
gives the result that the naive user might expect, i.e. replace elements of y with corresponding elements of x

wherever x>2. Wherever x>2 gives the result NA, no actionistaken. In R, any NA in x>2 yields avalue of NA
for y[x>2] on the left of the equation, and a value of NA for x [x>2] on the right of the equation.

In S-PLUS, the result on theright isthe same, i.e. an NA. However, on the left, elements that have a subscript
NA drop out. The vector on the left to which values will be assigned has, as a result, fewer elements than the
vector on theright.
Thus the following has the effect in R that the naive user might expect, but not in S-PLUS:

x <- ¢(1,6,2,NA,10)

y <- ¢(1,4,2,3,0)

y[x>2] <- x[x>2]

y

In SPLUS It is essential to specify, in the example just considered:
y[lis.na(x)&x>2] <- x[!is.na(x)&x>2]

Here is afurther example of R’s behaviour:
> x <- ¢(1,6,2,NA,10)

> x>2
[1] FALSE TRUE FALSE NA TRUE
> x[x>3] <- c(21,22) # This does not give what the nalve user might expect

Warning message:

number of items to replace is not a multiple of replacement length
> X

[1] 121 2NA 21

The safe way, in both SSPLUS and R, isto use ! is.na(x) to limit the selection, on one or both sides as
necessary, to those elements of X that are not NAs. We will have more to say on missing values in the section on
data frames that now follows.

7.3 Data frames

The concept of adata frame is fundamental to the use of most of the R modelling and graphics functions. A data
frameis a generalisation of a matrix, in which different columns may have different modes. All elements of any
column must however have the same mode, i.e. al numeric or al factor, or al character.

Data frames where all columns hold numeric data have some, but not al, of the properties of matrices. There
are important differences that arise because data frames are implemented aslists. To turn a data frame of
numeric datainto amatrix of numeric data, use as..matrix().

Lists are discussed below, in section 7.6.



7.3.1 Extraction of Component Parts of Data frames

Consider the dataframe Barley. A version isavailable with the data sets that are supplied to complement
these notes. The data set immer that is bundled with the Venables and Ripley MASSlibrary has the same data,
but arranged differently.

> names(Barley)

[1] "Site™ "Variety" "Year" "Yield”

> levels(Barley$Site)

[1] C" ™D™ 'GR'™ "M" “'UF" "W"

> levels(Barley$variety)

[1] "Manchuria" ""Peatland” ''Svansota" "Trebi™ "Velvet"

Notice that the data frame has abbreviations for site names, while variety names are given in full.

We will extract the datafor 1932, at the D site.
> Duluth1932 <- Barley[Barley$Year=="1932" & Barley$Site=="D",
+ c("Variety","Yield")]
> Duluth1932
Variety Yield
56 Manchuria 67.7
57 Svansota 66.7
58 Velvet 67.4
59 Trebi 91.8
60 Peatland 94.1

The first column holds the row labels, which in this case are the numbers of the rows that have been extracted. In
place of c(““Variety”,“Yield’) we could have written, more smply, c(2,4).

7.3.2 Data Sets that Accompany R Libraries

Typeindata() to get alist of data sets (mostly data frames) associated with al libraries that are in the current

search path. To get information on the data sets that are included in the base library, specify
data(package=""base™) # Here you must specify “package’, not ~library”’.

and similarly for any other library.

In order to bring any of these data frames into the working directory, specifically request it. (Ensure though that

therelevant library is attached.) Thus to bring in the data set ai rqual ity from the base library, typein
data(airquality)

The default Windows distribution includes the libraries BASE, EDA, STEPFUN (empirical distributions), and TS

(time series). Other libraries must be explicitly installed. For remaining sections of these notes, it will be useful

to have the MASS library installed. The current Windows version is bundled in the file VR61-6.zip, which you
can download from the directory of contributed packages at any of the CRAN sites.

The base library is automatically attached at the beginning of the session. To attach any other installed library,
usethe library() (or, equivalently package()) command.

7.4 Data Entry

Thefunction read.table() offersaready meansto read arectangular array into an R data frame. Suppose
that the file primates.dat contains:

"Potar monkey" 10 115

Gorilla 207 406

Human 62 1320

"Rhesus monkey" 6.8 179

Chimp 52.2 440
Then
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primates <- read.table("a:/primates.txt')

will create the data frame primates, from afileonthea: drive. Thetext stringsin the first column will
become the first column in the data frame.

Suppose that primates is a data frame with three columns — species name, body weight, and brain weight. You
can give the columns names by typing in:
names(primates)<-c(“Species”,""Bodywt", ""Brainwt')

Here then are the contents of the data frame.
> primates
Species Bodywt Brainwt

1 Potar monkey 10.0 115
2 Gorilla 207.0 406
3 Human 62.0 1320
4 Rhesus monkey 6.8 179
5 Chimp 52.2 440

Specify header=TRUE if thereis an initial how of header information. If the number of headersis one less
than the number of columns of data, then the first column will be used, providing entries are unique, for row
labels.

7.4.1 Idiosyncrasies

The function read. table() is straightforward for reading in rectangular arrays of data that are entirely
numeric. When, asin the above example, one of the columns contains text str:i‘g_g_ls the column is by default
stored as a factor with as many different levels as there are unique text strings™

Problems may arise when small mistakes in the data cause R to interpret a column of supposedly numeric data as
character strings, which are automatically turned into factors. For example there may be an O (oh) somewhere
where there should be a0 (zero), or an el (1) where there should be aone (1). If you use any missing value
symbols other than the default (NA), you need to make this explicit see section 7.3.2 below. Otherwise any
appearance of such symbolsas *, period(.) and blank (in a case where the separator is something other than a
space) will cause to whole column to be treated as character data.

Userswho find this default behaviour of read.table() confusing may wish to use the parameter setting

as.is = TRUE. E‘f the column is later required for use as afactor in amodel or graphicsformula, it may be
necessary to make it into afactor at that time. Some functions do this conversion automatically.

7.4.2 Missing values when using  read.table()

The function read. table() expects missing values to be coded as NA, unless you set na.strings to
recognise other characters as missing value indicators. If you have atext file that has been output from SAS,
you will probably want to set na.strings=c(".").

There may be multiple missing value indicators, e.g. na.strings=c(*“NA”," ", ”*”,"™"). The """ will
ensure that empty cells are entered as NAs.

7.4.3 Separators when using read.tableQ

With datafrom spreadsheetsE,‘t is sometimes necessary to use tab (*“\t’*) or comma as the separator. The
default separator iswhite space. To set tab as the separator, specify sep=""\t"".

37 Storage of columns of character strings as factorsis efficient when a small number of distinct strings are each
repeated alarge number of times.

3 Specifyingas. is = T prevents columns of (intended or unintended) character strings from being converted
into factors.

39 one way to get mixed text and numeric data across from Excel isto save the worksheet in a . csv text file
with comma as the separator. If for examplefilenameismyFfile.csvandisondrivea, use
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7.5 Factorsand Ordered Factors

We discussed factorsin section 2.6.4. They provide an economical way to store vectors of character stringsin
which there are many multiple occurrences of the same strings. More crucially, they have a central rolein the
incorporation of qualitative effectsinto model and graphics formulae.

Factors have adual identity. They are storﬁs integer vectors, with each of the values interpreted according to
the information that isin the table of levels™.

The dataframe islandcities that accompanies these notes holds the populations of the 19 island nation
cities with a 1995 urban centre population of 1.4 million or more. The row names are the city names, the first
column (country) has the name of the country, and the second column (popu lation) has the urban centre
population, in millions. Hereis atable that gives the number of times each country occurs

Australia Cuba |Indonesia Japan Philippines Taiwan United Ki ngdom
3 1 4 6 2 1 2
[ There are 19 cities in all.]

Printing the contents of the column with the name country gives the names, not the codes. Asin most
operations with factors, R does the trandation invisibly. There are though annoying exceptions that can make
the use of factorstricky. To be sure of getting the country names, specify

as.character(islandcities$country)

To get the codes, specify
as.integer(islandcities$country)

By default, R sorts the level namesin alphabetical order. If we form atable that has the number of times that
each country appears, thisisthe order that is used:

> table(islandcities$country)
Australia Cuba Indonesia Japan Philippines Taiwan United Kingdom
3 1 4 6 2 1 2
This order of the level names is purely a convenience. We might prefer countries to appear in order of latitude,
from North to South. We can change the order of the level namesto reflect this desired order:
> lev <- levels(islandcities$country)
> lev[c(7,4,6,2,5,3,1)]
[1] "United Kingdom™ 'Japan" "Taiwan" ""Cuba"
[5] "Philippines” "Indonesia™ "Australia”
> country <- factor(islandcities$country, levels=lev[c(7,4,6,2,5,3,1)])
> table(country)
United Kingdom Japan Taiwan Cuba Philippines Indonesia Australia
2 6 1 1 2 4 3

In ordered factors, i.e. factors with ordered levels, there are inequalities that relate factor levels.
Factors have the potential to cause afew surprises, so be careful! Here are two points to note:

1. When avector of character strings becomes a column of a data frame, R by default turnsit into a factor.
Enclose the vector of character strings in the wrapper function 1() if it isto remain character.

2. There are some contexts in which factors become numeric vectors. To be sure of getting the vector of text
strings, specify e.g. as.character(country).

3. Toextract the numeric levels 1, 2, 3, ..., specify as. numeric(country).

read.table("a:/myfile.csv", sep=",'"") toread thedatainto R. Thiscopeswith any spaceswhich
may appear in text strings. [But watch that none of the cell entries include commas.]

“O Factors are vectors which have mode numeric and class “factor”. They have an attribute levels that holds the
level names.
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7.6 Ordered Factors

Actually, it istheir levelsthat are ordered. To create an ordered factor, or to turn afactor into an ordered factor,
use the function ordered(). Thelevels of an ordered factor are assumed to specify positions on an ordinal
scale. Try

> stress. level<-rep(c("low","medium", ""high'),2)

> ordf.stress<-ordered(stress.level, levels=c('low™, "medium™,"high™))
> ordf.stress

[1] low medium high low medium high

Levels: low < medium < high

> ordf.stress<"medium"

[1] TRUE FALSE FALSE TRUE FALSE FALSE

> ordf.stress>="medium"

[1] FALSE TRUE TRUE FALSE TRUE TRUE

Later we will meet the notion of inheritance. Ordered factors inherit the attributes of factors, and have a further
ordering attribute. When you ask for the class of an object, you get details both of the class of the object, and of
any classes from which it inherits. Thus:

> class(ordf.stress)
[1] "ordered" '"factor"

7.7Lists

Listsmake it possible to collect an arbitrary set of R objects together under a single name. 'Y ou might for
example collect together vectors of several different modes and lengths, scalars, matrices or more general arrays,
functions, etc. Lists can be, and often are, arag-tag of different objects. We will use for illustration the list
object that R creates as output from an Im calculation.

For example, suppose that we create alinear model (Im) object elastic. Im (c. f. sections1.1.4 and 2..1.4) by
specifying

elastic.Im <- Im(distance~stretch, data=elasticband)
Itisreadily verified that elastic. Im consists of avariety of different kinds of objects, stored asalist. You
can get the names of these objects by typing in

> names(elastic.lIm)

[1] "coefficients” ‘residuals™ "effects" "rank"
[5] "fitted.values" "assign" "qr* "df.residual”
[9]1 "xlevels" "call" "terms" ""model™”

Thefirst list element is:
> elastic. Im$coefficients
(Intercept) stretch
-63.571429 4.553571

Alternative ways to extract thisfirst list element are:
elastic. Im[["coefficients™]]
elastic.In[[1]]

We can alternatively ask for the sublist whose only element is the vector elastic. Im$coefficients. For
this, specify elastic. Im[“coefFicients™] or elastic. Im[1]. Thereisasubtledifferenceinthe
result that is printed out. The information is preceded by $coefFicients, meaning “list element with name
coefficients”.

> elastic.Im[1]

$coefficients

(Intercept) stretch
-63.571429 4.553571
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The second list element is a vector of length 7
> options(digits=3)
> elastic. Im$residuals
1 2 3 4 5 6 7
2.107 -0.321 18.000 1.893 -27.786 13.321 -7.214

The tenth list element documents the function call:
> elastic.Im$call
Im(formula = distance ~ stretch, data = elasticband)
> mode(elastic.Im$call)
[1] "call™

*7.8 Matricesand Arrays

In these notes the use of matrices and arrays will be quite limited. For almost everything we do here, data frames
have more general relevance, and achieve what we require. Matrices are likely to be important for those users
who wish to implement new regression and multivariate methods.

All the elements of a matrix have the same mode, i.e. al numeric, or all character. Thus amatrix isamore
restricted structure than a data frame. One reason for numeric matrices is that they allow a variety of
mathematical operations that are not available for dataframes. Another reason isthat matrix generalisesto
array, which may have more than two dimensions.
Note that matrices are stored columnwise. Thus consider

> xxX <- matrix(1:6,ncol=3) # Equivalently, enter matrix(1:6,nrow=2)

> XX

[.11 [.2]1 [.3]
[1.] 1 3 5
2.1 2 4 6

If XX isany matrix, the assignment
X <- as.vector(xx)

places columns of XX, in order, into the vector X. In the example above, we get back the elements 1, 2, . . ., 6.
Names may be assigned to the rows and columns of a matrix. We give details below.

Matrices have the attribute “dimension”. Thus
> dim(xx)
[1] 23

In fact amatrix isavector (numeric or character) whose dimension attribute has length 2.

Now set
> x34 <- matrix(1:12,ncol=4)
> x34
[-.11 [.21 [.3] [.41
[1.1 1 4 7 10
[2.1 2 5 8 11
[3.1 3 6 9 12

Here are examples of the extraction of columns or rows or submatrices
x34[2:3,c(1,4)] # Extract rows 2 & 3 & columns 1 & 4
x34[2,] # Extract the second row
x34[-2,] # Extract all rows except the second
x34[-2,-3] # Extract the matrix obtained by omitting row 2 & column 3
The dimnames () function assigns and/or extracts matrix row and column names. The dimnames() function

givesalist, inwhich thefirst list element is the vector of row names, and the second list element is the vector of
column names. This generalisesin the obvious way for use with arrays, which we now discuss.
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7.8.1 Arrays

The generalisation from a matrix (2 dimensions) to allow > 2 dimensions gives an array. A matrix isa 2-
dimensional array.

Consider a numeric vector of length 24. So that we can easily keep track of the elements, we will make them 1,
2,.,24. Thus

X <- 1:24

Then
dim(x) <- c(4,6)

turnsthisinto a4 x 6 matrix.

> X
[.1]1 [.2] [.3]1 [.4]1 [.5] L.6]
1.1 1 5 9 13 17 21
[2.1 2 6 10 14 18 22
3.1 3 7 11 15 19 23
4.1 4 8 12 16 20 24
Now try
> dim(x) <-c(3,4,2)
> X
» s 1
(.11 [.2] [.3] [.4]
[1.1 1 4 7 10
[2.1 2 5 8 11
3.1 3 6 9 12
s s 2

[.11 [.2]1 .31 [.4]
[1.] 13 16 19 22
[2.] 14 17 20 23
[3.] 15 18 21 24

7.8.2 Conversion of Numeric Data frames into Matrices

There are various manipulations that are available for matrices, but not for data frames. Useas.matrix() to
handle any conversion that may be necessary.

7.9 Different Types of Attachments

When R starts up, it has alist of directories where it looks, in order, for objects. Y ou can inspect the current list
by typing in search(). Theworking directory comesfirst on the search list.

Y ou can extend the search list in two ways. The library() command adds libraries. Alternatively, or in
addition, the attach() command places adata frame on the search list. A dataframeisin fact a specialised
list, with its columns as the objects. Recall the syntax

> attach(primates) # NB: No quotes
> detach(primates) # NB: S-PLUS requires detach(“primates’™)

7.10 Exercises

1. Generate the numbers 101, 102, ..., 112, and store the result in the vector X.

2. Generate four repeats of the sequence of numbers (4, 6, 3).
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3. Generate the sequence consisting of eight 4s, then seven 6s, and finally nine 3s.
4. Create avector consisting of one 1, then two 2's, three 3's, etc., and ending with nine 9's.

5. Determine, for each of the columns of the data frame ai rqual ity (base library), the median, mean, upper
and lower quartiles, and range.

[Specify dataairqual ity) to bring the dataframe aiirqual ity into the working directory.]
6. For each of the following cal culations, decide what you would expect, and then check to see if you were right!
a)
answer <- c(2, 7, 1, 5, 12, 3, 4)
for (J in 2:length(answer)){ answer[j] <- max(answer[j].answer[j-11)}
b)
answer <- c(2, 7, 1, 5, 12, 3, 4)
for (J in 2:length(answer)){ answer[j] <- sum(answer[j].answer[j-11)}

7. Inthebuilt-in data frame ai rqual i ty (a) extract the row or rows for which Ozone has its maximum
value; and (b) extract the vector of values of Wind for values of Ozone that are above the upper quartile.

8. Refer to the Eurasian snow datathat is given in Exercise 1.6 . Find the mean of the snow cover (a) for the
odd-numbered years and (b) for the even-numbered years.

9. Determine which columns of the data frame Cars93 (MASS library) are factors. For each of these factor
columns, print out the levels vector. Which of these are ordered factors?

10. Use summary () to get information about data in the data frames aiirqual i ty, attitude (bothinthe

base library), and cpus (MASS library). Write brief notes, for each of these data sets, on what you have
been able to learn.

11. From the dataframe mtcars (MASS library) extract a data frame mtcarse6 that holds only the
information for cars with 6 cylinders.

12. From the data frame Cars93 (MASS library) extract a data frame which holds only information for small
and sporty cars.

13. Store the numbers obtained in exercise 2, in order, in the columns of a3 x 4 matrix.

14. Store the numbers obtained in exercise 3, in order, in the columns of a6 by 4 matrix. Extract the matrix
consisting of rows 3 to 6 and columns 3 and 4, of this matrix.
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8. Useful Functions

8.1 Confidence Intervalsand Tests
Use the help to get complete information. Below, | note two of the simpler functions.

8.1.1 The t-test and associated confidence interval
Use t.test(). Thisalows both aone-sample and atwo-sample test.

8.1.2 Chi-Square tests for two-way tables

Use chiisq.test() for atest for no association between rows and columnsin the output from table().

Alternatively, the argument may be a matrix.

Thistest that counts enter independently into the cells of atable. For example, the test isinvalid if thereis
clustering in the data.

8.2 Matching and Ordering

> match(<vecl>, <vec2>) ## For each element of <vecl>, returns the
## position of the first occurrence in <vec2>
> order(<vector>) ## Returns the vector of subscripts giving
## the order in which elements must be taken
## so that <vector> will be sorted.
> rank(<vector>) ## Returns the ranks of the successive elements.

Numeric vectors will be sorted in numerical order. Character vectors will be sorted in alphanumeric order.

The function match) can be used in all sorts of clever ways to pick out subsets of data. For example:
> X <- rep(1:5,rep(3,5))
> X
[11111222333444555
> two4 <- match(x,c(2,4), nomatch=0)
> two4
[11000111000222000
> # We can use this to pick out the 2s and the 4s
> as.logical (two4)
[1] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE
[13] FALSE FALSE FALSE
> x[as.logical (two4)]
[112224424

8.3 String Functions

substring(<vector of text strings>, <first position>, <last position>)
nchar(<vector of text strings>)
## Returns vector of number of characters in each element.

*8.3.1 Operations with Vectors of Text Strings — A Further Example

We will work with the column Make in the dataset Cars93 from the MASS library.
library(mass) # if needed
data(Cars93) # if needed

To extract the first part of the name, up to the first space, specify
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car .brandnames <- substring(Cars93$Make, 1, nblank-1)
> car.brandnames[1:5]
[1] "Acura™ "Acura™ "Audi® "Audi' '‘BMW"

To find the position at which the first space appears, we might do the following:
nblank <- sapply(Cars93$Make, function(X){n <- nchar(x);
a <- substring(x, 1:n, 1:n); m <- match(" ", a,nomatch=1); m})

8.4 Application of a Function to the Columns of an Array or Data Frame

apply(<array>, <dimension>, <function>)
lapply(<list>, <function>)

## N. B. A dataframe is a list. Output is a list.
sapply(<list>, <function>)

## As lapply(), but simplify (e.g. to a vector

## or matrix), if possible.

8.4.1 apply()

The function apply() can be used on data frames as well as matrices. Hereisan example:
> apply(airquality,2,mean) # All elements must be numeric!

Ozone Solar.R Wind Temp  Month Day
NA NA 9.96 77.88 6.99 15.80

> apply(airquality,2,mean,na.rm=T)
Ozone Solar.R Wind Temp Month Day

42.13 185.93 9.96 77.88 6.99 15.80

Theuse of apply(airquality,1,mean) will give means for each row. These are not, for these data,
useful information!

8.4.2 sapply()

The function sapply () can be useful for getting information about the columns of adata frame. Here we use it
to count that number of missing valuesin each column of the built-in dataframe airquality.

> sapply(airquality, function(xX)sum(is.na(x)))

Ozone Solar.R Wind Temp  Month Day
37 7 (0] 0 0 0
Here are severa further examples that use the data frame moths that accompanies these notes:
> sapply(moths, is.factor) # Determine which columns are factors
meters A P habitat

FALSE FALSE FALSE TRUE
> # How many levels does each factor have?
> sapply(moths, function(X)if(lis.factor(x))return(0) else length(levels(x)))

meters A P habitat
0 0 0 8
*8.5 tapply()

The arguments are avariable, alist of factors, and a function that operates on a vector to return asingle value.
For each combination of factor levels, the function is applied to corresponding values of the variable. The
output is an array with as many dimensions as there are factors. Where there are no data values for a particular
combination of factor levels, NA is returned.

Often one wishes to get back, not an array, but a data frame with one row for each combination of factor levels.
For example, we may have a data frame with two factors and a numeric variable, and want to create a new data
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frame with all possible combinations of the factors, and the cell means as the response. Here is an example of
how to do it.

First, use tapply () to produce an array of cell means. The function dimnames(), applied to this array,
returns a list whose first element holds the row names (i.e. for the level names for the first factor), and whose
second element holds the column names. [Further dimensions are possible] We pass thislist (row names,
column names) to expand . grid(), which returns a data frame with all possible combinations of the factor
levels. Finaly, stretch the array of means out into a vector, and append thisto the dataframe. Hereisan
example using the data set cabbages from the MASS library.

> data(cabbages)
> names(cabbages)

[1] "Cult™ ""Date" "HeadWt' "VitC"
> sapply(cabbages, levels)
$Cult

[1] "c39" "c52"

$Date
[1] lld16ll lldzoll lld21ll

$HeadWt
NULL

$VitC
NULL

> attach(cabbages)
> cabbages.tab <- tapply(HeadWt, list(Cult, Date), mean)
> cabbages.tab # Two varieties by three planting dates
dié d20 d21
c39 3.18 2.80 2.74
c52 2.26 3.11 1.47
> cabbages.nam <- dimnames(cabbages.tab)
> cabbages.nam # There are 2 dimensions, therefore 2 list elements
[[111
[1] "c39" "c52"

[[211
[1] ""di16" "d20" 'd21"
## We now stretch the array of means out into a vector, and create
## a new column of cabbages.df, named Means, that holds the means.
cabbages.df <- expand.grid(Cult=factor(cabbages.nam[[1]]).
Date=factor(cabbages.-nam[[2]11))
cabbages.df$Means <- as.vector(cabbages.tab)
cabbages.df
Cult Date Means
c39 dié 3.18
c62 di6 2.26
c39 d20 2.80
c52 d20 3.11
c39 d21 2.74
c62 d21 1.47

vV V + V VvV V

O 0 h WN PP

75



If there are no data for some combinations of factor levels, one might want to omit the corresponding rows.

8.6 Splitting Vectors and Data Frames Down into Lists—split()

Asan example,

split(cabbages$HeadWt, cabbages$Date)
returns alist with three elements, the first named “d16” and containing values of HeadWt where Date has the
level d16, and similarly for the remaining lists with names “d20” and “d21". You need to use split() inthis
way in order to do side by side boxplots. The function boxplot() takes asitsfirst element alist in which the
first list element is the vector of values for the first boxplot, the second list element is the vector of values for the
second boxplot, and so on.
Y ou can use split to split up adataframeinto alist of dataframes. For example

split(cabbages[,-1], cabbages$Date) # Split remaining columns

# by levels of Date

*8.7 Merging Data Frames

The data frame Cars93 (mass library) holds extensive information on data from 93 carson salein the USA in
1993. One of the variables, stored as afactor, is Type. | have created a data frame Cars93.summary, in
which the row names are the distinct values of Type, while alater column holds two character abbreviations of
each of the car types, suitable for use in plotting.

> Cars93.summary

Min._passengers Max.passengers No.of.cars abbrev

Compact 4 6 16 C
Large 6 6 11 L
Midsize 4 6 22 M
Small 4 5 21 Sm
Sporty 2 4 14 Sp
Van 7 8 9 Vv

We proceed thus to add a column that has the abbreviations to the data frame. Here however our demands are
simple, and we can proceed thus:

new.Cars93 <- merge(x=Cars93,y=Cars93.summary[,4,drop=F],
by .x="Type",by.y="row.names'")

This creates a data frame that has the abbreviations in the additional column with name “abbrev”.

If there had been rows with missing values of Type, these would have been omitted from the new data frame.
One can avoid this by making sure that Type has NA as one of its levels, in both data frames.

8.8 Dates

There are two libraries for working with dates — the date library and the chron library.

We demonstrate the use of the date library. The function as.date () will convert a character string into a dates
object. By default, dates are stored using January 1 1960 as origin. Thisisimportant when you use
as. integer to convert adate into an integer value.

> library(date) # library must be installed

> as.date("'1/1/60", order="dmy')

[1] 1Jan60

> as.date("'1/12/60", " dmy"")

[1] 1Dec60

> as.date('1/12/60","dmy')-as.date(*'1/1/60", ""dmy'")
[1] 335

> as.date("'31/12/60", " dmy'")

[1] 31Dec60
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> as.date(''31/12/60", " dmy'")-as.date(*'1/1/60", " "dmy'")
[1] 365

> as. integer(as.date(*'1/1/60, "dmy"))

[1] 0

> as.integer(as.date(''1/1/2000","dmy""))
[1] 14610

> as.integer(as.date(''29/2/2000","dmy "))
[1] 14669

> as.integer(as.date(''1/3/2000","dmy""))
[1] 14670

A wide variety of different formats are possible. Among the legal formats are 8-31-2000 (or 31-8-2000 if you
specify order=""dmy"”), 8/31/2000 (cf 31/8/2000), or August 31 2000.

Observe that one can subtract two dates and get the time between themin days. There are several functions
(including date . ddmmmyy()) for printing out dates in various different formats.

8.9 Exercises

1 For the data frame Cars93, get the information provided by summary() for eachlevel of Type.
(Use split())

2. Determine the number of cars, in the data frame Cars93, for each Origin and Type.

3. In the data frame claims: (8) determine the number of rows of information for each age category
(age) and car type (type); (b) determine the total number of claims for each age category and car
type; (c) determine, for each age category and car type, the number of rows for which data are missing;
(d) determine, for each age category and car type, the total cost of claims.

4. Remove all the data frames and other objects that you have added to the working directory.

[If you have a vector that holds the names of the objects that were in the directory when you started, the
function additions() will give the names of objects that have been added.]

5. Determine the number of days, according to R, between the following dates:

a) January 1 inthe year 1700, and January 1 in the year 1800
b) January 1 in the year 1998, and January 1 in the year 2000
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9. Writing Functions and other Code

We have aready met several functions. Hereis afunction to convert Fahrenheit to Celsius:
> fahrenheit2celsius <- function(fahrenheit=32:40)(fahrenheit-32)*5/9
> # Now invoke the function
> fahrenheit2celsius(c(40,50,60))
[1] 4-444444 10.000000 15.555556
The function returns the value (Fahrenheit-32)*5/9. More generally, afunction returns the value of the
last statement of the function. Unless the result from the function is assigned to a name, the result is printed.
Here isafunction that prints out the mean and standard deviation of a set of numbers:
> mean.and.sd <- function(x=1:10){
av <- mean(x)
sd <- sqrt(var(x))
c(mean=av, SD=sd)

}

# Now invoke the function
mean.and.sd()

mean SD
5.500000 3.027650

V V.V + + + +

> mean.and.sd(hills$climb)
mean SD
1815.314 1619.151

9.1 Syntax and Semantics

A function is created using an assignment. On the right hand side, the parameters appear within round brackets.
You can, if you wish, give adefault. Inthe example above the default was x = 1:10, so that users can run the
function without specifying a parameter, just to see what it does.

Following the closing “)” the function body appears. Except where the function body consists of just one
statement, thisis enclosed between curly braces ({ }). Thereturn value usually appears on the final line of the
function body. In the example above, this was the vector consisting of the two named el ements mean and sd.

9.1.1 A Function that gives Data Frame Details

First we will define afunction that accepts a vector X asits only argument. It will allow us to determine whether
x isafactor, and if afactor, how many levelsit has. The built-in function is.factor(Q will return T if X isa
factor, and otherwise F. The following function faclev() uses is.factor() to test whether x is afactor.
It printsout O if X is not afactor, and otherwise the number of levels of x.

> faclev <- function(X)if(lis.factor(x))return(0) else
length(levels(X))
Earlier, we encountered the function sapply () that can be used to repeat a calculation on all columns of a

dataframe. [More generally, the first argument of sapply () may bealist.] To apply Faclev() to all
columns of the data frame moths we can specify

> sapply(moths, faclev)

We can aternatively give the definition of Faclev directly as the second argument of sapply, thus
> sapply(moths, function(X)if(lis.factor(x))return(0)
else length(levels(x)))
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Finally, we may want to do similar calculations on a number of different dataframes. So we create a function
check.df () that encapsulates the calculations. Here is the definition of check.df().

check.df <- function(df=moths)
sapply(df, function(X)if(lis.factor(x))return(0) else
length(levels(x)))

9.1.2 Compare Working Directory Data Sets with a Reference Set
At the beginning of a new session, we might store the names of the objects in the working directory in the vector
dsetnames, thus.

dsetnames <- objectsQ

Now suppose that we have afunction additions(), defined thus:
additions <- function(objnames = dsetnames)
{
newnames <- objects(pos=1)
existing <- as.logical(match(newnames, objnames, nomatch = 0))
newnames[!existing]

}

At some later point in the session, we can enter
additions(dsetnames)

to get the names of objects that have been added since the start of the session.

9.2 Issuesfor the Writing and Use of Functions
There can be many functions. Choose their names carefully, so that they are meaningful.

Choose meaningful names for arguments, even if this means that they are longer than one would like.
Remember that they can be abbreviated in actual use.

Asfar as possible, make code self-documenting. Use meaningful names for R objects. Ensure that the names
used reflect the hierarchies of files, data structures and code.

R allows the use of names for elements of vectors and lists, and for rows and columns of arrays and dataframes.
Consider the use of names rather than numbers when you pull out individual elements, columns etc. Thus
dead. tot[,’dead’] is more meaningful and safer than dead . tot[,2].

Settings that may need to change in later use of the function should appear as default settings for parameters.
Use lists, where this seems appropriate, to group together parameters that belong together conceptually.

Where appropriate, provide a demonstration mode for functions. Such a mode will print out summary
information on the data and/or on the results of manipulations prior to analysis, with appropriate labelling. The
code needed to implement this feature has the side-effect of showing by example what the function does, and
may be useful for debugging.

Break functions up into a small number of sub-functions or “primitives’. Re-use existing functions wherever
possible. Write any new “primitives’ so that they can be re-used. This helps ensure that functions contain well-
tested and well-understood components. Watch the r-help electronic mail list (section 13.3) for useful functions
for routine tasks.

Wherever possible, give parameters sensible defaults. Often agood strategy is to use as defaults parameters that
will serve for a demonstration run of the function.

NULL isauseful default where the parameter mostly is not required, but where the parameter if it appears may
be any one of several types of data structure. Thetest if(!is.null()) then determines whether one needs
to investigate that parameter further.

Structure computations so that it is easy to retrace them. For this reason substantial chunks of code should be
incorporated into functions sooner rather than later.

Structure code to avoid multiple entry of information.
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9.3 Functions as aids to Data M anagement

Where data, labelling etc must be pulled together from a number of sources, and especially where you may want
to retrace your steps some months later, take the same care over structuring data as over structuring code. Thus
if thereisafactoria structure to the data files, choose file names that reflect it. Y ou can then generate the file
names automatically, using paste() to glue the separate portions of the name together.

Lists are a useful mechanism for grouping together all data and labelling information that one may wish to bring
together in asingle set of computations. Use as the name of the list a unique and meaningful identification code.
Consider whether you should include objects as list items, or whether identification by nameis preferable. Bear
in mind, also, the use of switch(), with the identification code used to determine what switch() should
pick out, to pull out specific information and data that is required for a particular run.

Concentrate in one function the task of pulling together data and labelling information, perhaps with some
subsequent manipulation, from a number of separate files. This structures the code, and makes the function a
source of documentation for the data.

Use user-defined data frame attributes to document your data. For example, given the dataframe elastic
containing the amount of stretch and resulting distance of movement of arubber band, one might specify

attributes(elasticbhand)$title <-
“Extent of stretch of band, and Resulting Distance”

9.3.1 Graphs

Use graphs freely to shed light both on computations and on data. One of R’s big plusesisits tight integration of
computation and graphics.

9.4 A Simulation Example

We would like to know how well such a student might do by random guessing, on a multiple choice test
consisting of 100 questions each with five aternatives. We can get an idea by using simulation. Each question
corresponds to an independent Bernoulli trial with probability of success equal to 0.2. We can simulate the
correctness of the student for each question by generating an independent uniform random number. If this
number isless than .2, we say that the student guessed correctly; otherwise, we say that the student guessed
incorrectly.

Thiswill work, because the probability that a uniform random variable islessthan .2 is exactly .2, while the
probability that a uniform random variable exceeds .2 is exactly .8, which is the same as the probability that the
student guessesincorrectly. Thus, the uniform random number generator is simulating the student. R can do this
asfollows:

guesses <- runif(100)
correct.answers <- 1*(guesses < .2)
correct._answers

The multiplication by 1 causes (guesses<.2), which is calculated as TRUE or FALSE, to be coerced to 1
(TRUE) or O (FALSE). Thevector correct.answers thus contains the results of the student's guesses. A 1
isrecorded each time the student correctly guesses the answer, while a0 is recorded each time the student is
wrong.

One can thus write an R function that simulates a student guessing at a True-False test consisting of some
arbitrary number of questions. We leave this as an exercise.

9.4.1 Poisson Random Numbers

One can think of the Poisson distribution as the distribution of the total for occurrences of rare events. For
example, the occurrence of an accident at an intersection on any one day should be arare event. Thetotal
number of accidents over the course of ayear may well follow a distribution that is close to Poisson. [However
the total number of people injured is unlikely to follow a Poisson distribution. Why?] We can generate Poisson
random numbersusing rpois(). Itissimilar to the rbinom function, but thereis only one parameter — the
mean. Suppose for example traffic accidents occur at an intersection with a Poisson distribution that has a mean
rate of 3.7 per year. To simulate the annual number of accidents for a 10-year period, we can specify
rpois(10,3.7).
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We pursue the Poisson distribution in an exercise below.

9.5 Exercises

1. Usethe round function together with runif() to generate 100 random integers between 0 and 99. Now
look up the help for sample(), and use it for the same purpose.

2. Write afunction that will take as its arguments alist of response variables, alist of factors, adataframe, and a
function such as mean or median. It will return a data frame in which each value for each combination of factor
levelsis summarised in a single statistic, for example the mean or the median.

3. The supplied data frame mi Ik has columns Four and one. Seventeen people rated the sweetness of each of
two samples of amilk product on a continuous scale from 1 to 7, one sample with four units of additive and the
other with one unit of additive. Hereisafunction that plots, for each patient, the Four result against the one
result, but insisting on the same range for the x and y axes.

plot.one <- function()

{
xyrange <- range(milk) # Calculates the range of all values
# In the data frame
par(pin=c(6.75, 6.75)) # Set plotting area = 6.75 in. by 6.75 in.
plot(four, one, data=milk, xlim=xyrange, ylim=xyrange, pch=16)
abline(0,1) # Line where four = one
}

Rewrite this function so that, given the name of a data frame and of any two of its columns, it will plot the
second named column against the first named column, showing also the line y=x.

4. Write afunction that prints, with their row and column labels, only those elements of a correlation matrix for
which abs(correlation) >= 0.9.

5. Write your own wrapper function for one-way analysis of variance that provides a side by side boxplot of the
distribution of values by groups. If no response variable is specified, the function will generate random normal
data (no difference between groups) and provide the analysis of variance and boxplot information for that.

6. Write afunction that adds a text string containing documentation information as an attribute to a dataframe.

7. Write afunction that computes a moving average of order 2 of the valuesin a given vector. Apply the above
function to the data (in the data set huron that accompanies these notes) for the levels of Lake Huron. Repeat
for amoving average of order 3.

8. Find away of computing the moving averagesin exercise 3 that does not involve the use of a for loop.

9. Create a function to compute the average, variance and standard deviation of 1000 randomly generated
uniform random numbers, on [0,1]. (Compare your results with the theoretical results: the expected value of a
uniform random variable on [0,1] is 0.5, and the variance of such arandom variable is 0.0833.)

10. Write afunction that generates 100 independent observations on a uniformly distributed random variable on
theinterval [3.7, 5.8]. Find the mean, variance and standard deviation of such a uniform random variable. Now
modify the function so that you can specify an arbitrary interval.

11. Look up the help for the sample () function. Useit to generate 50 random integers between 0 and 99,
sampled without replacement. (This means that we do not allow any number to be sampled a second time.)
Now, generate 50 random integers between 0 and 9, with replacement.

12. Write an R function that smulates a student guessing at a True-Fal se test consisting of 40 questions. Find
the mean and variance of the student's answers. Compare with the theoretical values of .5 and .25.

13. Write an R function that simulates a student guessing at a multiple choice test consisting of 40 questions,
where there is chance of 1 in 5 of getting the right answer to each question. Find the mean and variance of the
student's answers. Compare with the theoretical values of .2 and .16.

14. Write an R function that simulates the number of working light bulbs out of 500, where each bulb has a
probability .99 of working. Using simulation, estimate the expected value and variance of the random variable
X, whichis 1 if the light bulb works and O if the light bulb does not work. What are the theoretical values?
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15. Write afunction that does an arbitrary number n of repeated simulations of the number of accidentsin a
year, plotting the result in a suitable way. Assume that the number of accidentsin a year follows a Poisson
distribution. Run the function assuming an average rate of 2.8 accidents per year.

16. Write afunction that simulates the repeated calculation of the coefficient of variation (= the ratio of the mean
to the standard deviation), for independent random samples from a normal distribution.

17. Write afunction that, for any sample, calculates the median of the absolute values of the deviations from the
sample median.

*18. Generate random samples from normal, exponential, t (2 d. f.), and t (1 d. f.), thus:
a) xn<-rnorm(100)
b) xe<-rexp(100)
c) xt2<-rt(100, df=2)
d) xt2<-rt(100, df=1)
Apply the function from exercise 17 to each sample. Compare with the standard deviation in each case.

*19. The vector x consists of the frequencies

5, 3,1, 4, 6
The first element is the number of occurrences of level 1, the second is the number of occurrences of level 2, and
so on. Write afunction that takes any such vector x asits input, and outputs the vector of factor levels, herel 1
1112223 . ..
[You'll need the information that is provided by cumsum(x). Form avector in which 1's appear whenever the
factor level isincremented, and is otherwise zero. . . ]

*20. Write afunction that cal culates the minimum of a quadratic, and the value of the function at the minimum.

*21. A “between times’ correlation matrix, has been calculated from data on heights of treesat times 1, 2, 3, 4, .
.. Write afunction that calculates the average of the correlations for any given lag.

*22. Given dataontreesat times1, 2, 3, 4, . . ., write afunction that cal culates the matrix of “average’ relative
growth rates over the severa intervals. Apply your function to the data frame rats that accompanies these
notes.

. _ 1dw _dlogw

[The relative growth rate may be defined as ——— =

w dt dt
logw, —logw,

t, -t

. Henceitsis reasonable to calcul ate the

average over theinterval fromt; tot, as
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*10. GLM, and General Non-linear Models

GLM models are Generalized Linear Models. They extend the multiple regression model. The GAM
(Generalized Additive Model) model is a further extension.

10.1 A Taxonomy of Extensionsto the Linear Model

R allows avariety of extensionsto the multiple linear regression model. In this chapter we describe the
alternative functional forms.

L]

The basic model formulation™ 1s;
Observed value = Model Prediction + Statistical Error

Often it is assumed that the statistical error values (values of € in the discussion below) are independently and
identically distributed as Normal. Generalized Linear Models, and the other extensions we describe, allow a
variety of non-normal distributions. In the discussion of this section, our focusis on the form of the model
prediction, and we leave until later sections the discussion of different possibilities for the “error” distribution.

Multiple regression model

y=a+ B+ BoxXot .. HBXp+E

Use ImQ) tofit multiple regression models. The various other models we describe are, in essence,
generalizations of this model.

Generalized Linear Model (e.g. logit model)

y=g(@+bx)+e
Here g(.) is selected from one of a small number of options.

For logit models, y = 1T+ € , where
T
log——)=a+
S ) by,
Here 1tis an expected proportion, and
log(—"—) =logit(7) islog(odds).
1-m
We can turn this model around, and write

_ __exp(a+bx,)
y=g(a+bx)+e= 1+ exp(a+bx,)

Here g(.) undoes the logit transformation.

We can add more explanatory variables: a+ byx; + . .. + bpXp

Use gIm() to fit generalized linear models.
Additive M odel
y = qal(xl) + qoZ(XZ) Tt qop(xp) tE&

1 This may be generalized in various ways. Models which have this form may be nested within other models
which have thisbasic form. Thus there may be “predictions’ and “errors’ at different levels within the total
model.



Additive models are a generalization of Im models. In 1 dimension

y=@a(x)+e

Someof Z; = (RL(Xl), Z, = (pz(xz),..., Z, = (pp(xp) may be smoothing functions, while others may be

the usual linear model terms. The constant term gets absorbed into one or more of the @ s.

Generalized Additive M odel
Y= 9(@(x) + @ (%) + ...+ @, (X)) + €

Generalized Additive Models are a generalisation of Generalized Linear Models. For example, g(.) may be the
function that undoes the logit transformation, asin alogistic regression model.

Someof Z, =@ (%,),Z, = @,(X,),--, Z, = @, (X,) may be smoothing functions, while others may be
the usua linear model terms.

We can transform to get the model
y=9(z+z+..z,))+e

Notice that even if p = 1, we may still want to retain both ¢ (.) and g(.), i.e.

y=9(@a(x)) +¢

Thereason isthat g(.) isaspecific function, such asthe inverse of the logit function. The function (pl() does
any further necessary smoothing, in case g(.) is not quite the right transformation. One wants g(.) to do as much
of possible of the task of transformation, with qq() giving the transformation any necessary additional
flourishes.

At the time of writing, R has no specific provision for generalized additive models. The fitting of spline (bsQ
or ns()) termsin alinear model or ageneralized linear model will often do what is needed.

10.2 Logistic Regression
We will use alogistic regression model as a starting point for discussing Generalized Linear Models.

With proportions that range from less than 0.1 to 0.99, it is not reasonable to expect that the expected proportion
will be alinear function of x. Some such transformation (link’ function) asthe logit is required. A good way to
think about logit models isthat they work on alog(odds) scale. If pisaprobability (e.g. that horse A will win
the race), then the corresponding odds are p/(1-p), and

log(odds) = log( ) =log(p) -log(1-p)

1-p

The linear model predicts, not p, but log( ). Fig. 24 showsthe logit transformation.

1-p
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Figure24: Thelogit or log(odds) transformation. Shown here
isaplot of log(odds) versus proportion. Notice how therangeis
stretched out at both ends.

The logit or log(odds) function turns expected proportionsinto values that may range from -oo to +co. It isnot
satisfactory to use alinear model to predict proportions. The values from the linear model may well lie outside
therangefrom 0 to 1. Itishowever in order to use alinear model to predict logit(proportion). The logit
function is an example of alink function.

There are various other link functions that we can use with proportions. One of the commonest isthe
complementary log-log function.

10.2.1 Anesthetic Depth Example

Thirty patients were given an anesthetic t that was maintained at a pre-determined [alveolar] concentration

for 15 minutes before making anincision . It was then noted whether the patient moved, i.e. jerked or twisted.
Theinterest isin estimating how the probability of jerking or twisting varies with increasing concentration of the
anesthetic agent.

Theresponse is best taken as nomove, for reasons that will emerge later. Thereisasmall number of
concentrations; so we begin by tabulating proportion that have the nomove outcome against concentration.

Alveolar Concentration

Nomove 0.8 1 12 14 16 2.5
0 4 2 2 0 0
1 1 1 4 4 4 2
Totd 7 5 6 6 4 2

2| am grateful to John Erickson (Anesthesia and Critical Care, University of Chicago) and to Alan Welsh
(Centre for Mathematics & its Applications, Australian National University) for allowing me use of these data.
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Table 1: Patients moving (0) and not moving (1), for each of
six different alveolar concentrations.

Fig. 25 then displays a plot of these proportions.
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Figure 25: Plot, versus concentration, of proportion of patients
not moving. The horizontal lineisthe estimate of the proportion
of moves one would expect if the concentration had no effect.

We fit two models, the logit model and the complementary log-log model. We can fit the models either directly
to the 0/1 data, or to the proportionsin Table 1. To understand the output, you need to know about “deviances’.
A deviance has arole very similar to a sum of squaresin regression. Thuswe have:

Regression Logistic regression
degrees of freedom degrees of freedom
sum of squares deviance
mean sum of squares mean deviance
(divide by d.f.) (divide by d.f.)
We prefer models with a small We prefer models with a small
mean residual sum of sguares. mean deviance.

If individuals respond independently, with the same probability, then we have Bernoulli trials. Justification for
assuming the same probability will arise from the way in which individuals are sampled. While individuals will
certainly be different in their response the notion is that, each time a new individual istaken, they are drawn at
random from some larger population. Here isthe R code:

> anaes.logit <- glm(nomove ~ conc, family = binomial(link = logit),
+ data = anesthetic)

The output summary is:

88



> summary(anaes.logit)

Call: gIm(formula = nomove ~ conc, family = binomial(link = logit),
data = anesthetic)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.77 -0.744 0.0341 0.687 2.07

Coefficients:
Value Std. Error t value
(Intercept) -6.47 2.42 -2.68
conc 5.57 2.04 2.72

(Dispersion Parameter for Binomial family taken to be 1)

Null Deviance: 41.5 on 29 degrees of freedom
Residual Deviance: 27.8 on 28 degrees of freedom
Number of Fisher Scoring lterations: 5

Correlation of Coefficients:

(Intercept)
conc -0.981

Fig. 26 isagraphical summary of the results:
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Figure 26: Plot, versus concentration, of log(odds) [= logit(proportion)]
of patients not moving. Thelineisthe estimate of the proportion of
moves, based on thefitted logit model.

With such asmall sample sizeit isimpossible to do much that is useful to check the adequacy of the model.

Youcandsotry plot(anaes. logit) and plot.gam(anaes. logit).



10.3 glm models (Generalized Linear Regression M odelling)
In the above we had
anaes.logit <- gIm(nomove ~ conc, family = binomial(link = logit),
data=anesthetic)

The Fami by parameter specifies the distribution for the dependent variable. Thereis an optional argument that
allows us to specify the link function. Below we give further examples.

10.3.2 Data in the form of counts

Datathat are in the form of counts can often be analysed quite effectively assuming the poisson family. The
link that is commonly used hereis log. The log link transforms from positive numbers to numbersin the
range -co to +oo that alinear model may predict.

10.3.3 The gaussian family

If no family is specified, then the family is taken to be gaussian. Thedefault link isthen the identity, as
for an Im model. Thisway of formulating an Im type model does however have the advantage that oneis not
restricted to the identity link.

data(airquality)

air.glm<-gIm(Ozone~(1/3) ~ Solar.R + Wind + Temp, data = airquality)
# Assumes gaussian family, i.e. normal errors model

summary(air.glim)

10.4 Modelsthat Include Smooth Spline Terms

These make it possible to fit spline and other smooth transformations of explanatory variables. One can request
a “smooth’ b-spline or n-spline transformation of a column of the X matrix. In place of x one specifies bs(x)or
ns(X). One can control the smoothness of the curve, but often the default works quite well. Y ou need to
install the splineslibrary. R does not at present have afacility for plots that show the contribution of each term
to the model.

10.4.1 Dewpoint Data

The data set dewpoi nt3has columns mi ntemp, maxtemp and dewpoint. The dewpoint values are
averages, for each combination of mintemp and maxtemp, of monthly data from a number of different timesand
locations. Wefit the model:

dewpoint = mean of dewpoint + smooth(mintemp) + smooth(maxtemp)

Taking out the mean is a computational convenience. Also it provides a more helpful form of output. Here are
details of the calculations:
dewpoint.Im <- Im(dewpoint ~ bs(mintemp) + bs(maxtemp),
data = dewpoint)
options(digits=3)
summary(dewpoint. Im)

10.5 Non-linear Models

You can use nls() (non-linear least squares) to obtain aleast squares fit to a non-linear function.

10.6 Model Summaries
Typein

B am grateful to Dr Edward Linacre, Visiting Fellow, Geography Department, Australian National University,
for making these data available.
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methods(summary)

to get alist of the summary methods that are available. Y ou may want to mix and match, e.g. summary . ImQ)
on an aov or glm object. The output may not be what you might expect. So be careful!

10.7 Further Elaborations

Generalised Linear Models were developed in the 1970s. They unified a huge range of diverse methodology.
They have now become a stock-in-trade of statistical analysts. Their practical implementation built on the
powerful computational abilities that, by the 1970s, had been devel oped for handling linear model calculations.

Practical data analysis demands further elaborations. An important elaboration is to the incorporation of more
than one term in the error structure. The R nlme library implements such extensions, both for linear models and
for awide class of nonlinear models.

Each such new development builds on the theoretical and computational tools that have arisen from earlier
developments. Exciting new analysis tools will continue to appear for along time yet. Thisis fortunate. Most
professional users of R will regularly encounter data where the methodol ogy that the data ideally demandsis not
yet available.

10.8 Exercises

1. Fit a Poisson regression model to the datain the data frame moths that Accompaniesthese notes. Allow
different intercepts for different habitats. Use log(meters) as a covariate.

10.9 References
Dobson, A. J. 1983. An Introduction to Statistical Modelling. Chapman and Hall, London.

Hastie, T. J. and Tibshirani, R. J. 1990. Generalized Additive Models. Chapman and Hall, London.
McCullagh, P. and Nelder, J. A., 2™ edn., 1989. Generalized Linear Models. Chapman and Hall.
Venables, W. N. and Ripley, B. D., 2nd edn 1997. Modern Applied Statistics with S-Plus. Springer, New Y ork.
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*11. Multi-level Models, Time Series and Survival Analysis

Repeated measures models are a special case of multi-level models.

11.1 Multi-Level Models, Including Repeated M easures M odels

Models have both a fixed effects structure and an error structure. For example, in an inter-laboratory comparison
there may be variation between |aboratories, between observers within laboratories, and between multiple
determinations made by the same observer on different samples. If we treat laboratories and observers as
random, the only fixed effect is the mean.

The functions Ime () and nlme (), from the Pinheiro and Bates library, handle models in which a repeated
measures error structure is superimposed on alinear (Ime) or non-linear (nIme) model. Version 3 of Imeis
broadly comparable to Proc Mixed in the widely used SAS statistical package. The function Ime has associated
with it highly useful abilities for diagnostic checking and for various insightful plots.

Thereisastrong link between awide class of repeated measures models and time series models. Inthetime
series context there is usually just one realisation of the series, which may however be observed at alarge
number of time points. In the repeated measures context there may be a large number of realisations of a series
that istypically quite short.

11.1.1 The Kiwifruit Shading Data, Again

Refer back to section 5.8.2 for details of these data. The fixed effects are block and treatment (shade). The
random effects are block (though making block arandom effect is optional), plot within block, and units
within each block/plot combination. Here isthe analysis:

> library(nlme)
Loading required package: nls
> kiwishade$plot<-factor(paste(kiwishade$block, kiwishade$shade,
sep="."))

> kiwishade. Ime<-Ime(yield~shade, random=~1]|block/plot, data=kiwishade)
> summary(kiwishade. Ime)
Linear mixed-effects model Fit by REML

Data: kiwishade

AlIC BIC logLik
265.9663 278.4556 -125.9831

Random effects:
Formula: ~1 | block
(Intercept)
StdDev: 2.019373

Formula: ~1 | plot %in% block
(Intercept) Residual
StdDev: 1.478639 3.490378

Fixed effects: yield ~ shade

Value Std.Error DF t-value p-value
(Intercept) 100.20250 1.761621 36 56.88086 <.0001
shadeAug2Dec 3.03083 1.867629 6 1.62282 0.1558
shadeDec2Feb -10.28167 1.867629 6 -5.50520 0.0015
shadeFeb2May -7.42833 1.867629 6 -3.97741 0.0073
Correlation:
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(Intr) shdA2D shdD2F
shadeAug2Dec -0.53
shadeDec2Feb -0.53 0.50
shadeFeb2May -0.53 0.50 0.50

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.4153887 -0.5981415 -0.0689948 0.7804597 1.5890938

Number of Observations: 48
Number of Groups:
block plot %in% block
3 12
> anova(kiwishade. Ime)
numDF denDF F-value p-value
(Intercept) 1 36 5190.552 <.0001
shade 3 6 22_.211 0.0012
Thiswas a balanced design, which iswhy section 5.8.2 could use aov() for an analysis. We can get an output

summary that is helpful for showing how the error mean squares match up with standard deviation information
given above thus:

> intervals(kiwishade. Ime)
Approximate 95% confidence intervals

Fixed effects:
lower est. upper
(Intercept) 96.62977 100.202500 103.775232
shadeAug2Dec -1.53909 3.030833 7.600757
shadeDec2Feb -14.85159 -10.281667 -5.711743
shadeFeb2May -11.99826 -7.428333 -2.858410

Random Effects:
Level: block

lower est. upper

sd((Intercept)) 0.5473014 2.019373 7.45086
Level: plot

lower est. upper

sd((Intercept)) 0.3702555 1.478639 5.905037

Within-group standard error:
lower est. upper
2.770678 3.490378 4.397024

We are interested in the three estimates. By squaring the standard deviations and converting them to variances
we get the information in the following table:

Variance component | Notes
block 2.019° = 4.076 Three blocks
plot 1.479°= 2.186 4 plots per block
residual (within group) | 3.490°=12.180 4 vines (subplots) per plot
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The above allows us to put together the information for an analysis of variance table. We have:

Variance Mean sguare for anovatable df.
component
block 4.076 | 12.180 + 4 x 2.186 + 16 x 4.076 2
=86.14 (3-1)
plot 2.186 | 12.180 + 4 x 2.186 6
=20.92 (3-1) x(2-1)
residual (within group) 12.180 | 12.18 3x4x(4-1)

Now find see where these same pieces of information appeared in the analysis of variance table of section 5.8.2:
> kiwishade.aov<-aov(yield~block+shade+Error(block:shade) ,data=kiwishade)
> summary(kiwishade.aov)

Error: block:shade

Df Sum Sq Mean Sq F value Pr(F)
block 2 172.35 86.17 4.1176 0.074879
shade 3 1394.51 464.84 22.2112 0.001194
Residuals 6 125.57 20.93

Error: Within
Df Sum Sq Mean Sq F value Pr(GF)
Residuals 36 438.58 12.18

11.1.2 The Tinting of Car Windows

In section 4.1 we encountered data from an experiment that aimed to model the effects of the tinting of car

windows on visual performance@.I The authors are mainly interested in effects on side window vision, and
hence in visual recognition tasks that would be performed when looking through side windows.

Data arein the dataframe tinting. Inthisdataframe, csoa (critical stimulus onset asynchrony, i.e. the time
in milliseconds required to recognise an aphanumeric target), it (inspectiontime, i.e. thetimerequired for a
simple discrimination task) and age are variables, while tint (3 levels) and target (2 levels) are ordered
factors. The variable sex iscoded 1 for males and 2 for females, while the variable agegp is coded 1 for
young people (all in their early 20s) and 2 for older participants (al in the early 70s).

We have two levels of variation —within individuals (who were each tested on each combination of tint and
target), and between individuals. So we need to specify id (identifying the individual) as arandom effect.
Plots such as we examined in section 4.1 make it clear that, to get variances that are approximately
homogeneous, we need to work with log(csoa) and log(it). Here we examine the analysisfor log(it). We
start with amodel that is likely to be more complex than we need (it has all possible interactions):

itstar. Ime<-Ime(log(it)~tint*target*agegp*sex,
random=~1]id, data=tinting,method="ML")

A reasonable guessisthat first order interactions may be al we need, i.e.
it2. Ime<-Ime(log(it)~(tint+target+agegp+sex)”2,
random=~1]id, data=tinting,method=""ML")

“ Datardate to the paper: Burns, N. R., Nettlebeck, T., White, M. and Willson, J. 1999. Effects of car window
tinting on visual performance: a comparison of elderly and young drivers. Ergonomics 42: 428-443.
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Finally, there is the very simple model, allowing only for main effects:

itl. Ime<-Ime(log(it)~(tint+target+agegp+sex),

random=~1]id, data=tinting,method=""M

L)

Note that we have fitted all these models by maximum likelihood. Thisis so that we can do the equivalent of an

analysis of variance comparison. Here iswhat we get:
> anova(itstar.lIme,it2_Ime,itl.Ime)

Model df AlC BIC logLik Test L.Ratio p-value
itstar.Ime 1 26 8.146187 91.45036 21.926906
it2.Ime 2 17 -3.742883 50.72523 18.871441 1 vs 2 6.11093 0.7288
itl.Ime 3 8 1.138171 26.77022 7.430915 2 vs 3 22.88105 0.0065

The model that limits attention to first order interactionsis adequate. We will need to examine the first order
interactions individually. For thiswe re-fit the model used for it2. Ime, but now with method=""REML"".

it2.reml<-update(it2. Ime,method="REML"

We now examine the estimated effects:
> options(digits=3)
> summary(it2.reml)$tTable

Value Std.Error
(Intercept) 6.05231 0.7589
tint.L 0.22658 0.0890
tint.Q 0.17126 0.0933
targethicon -0.24012 0.1010
agegp -1.13449 0.5167
sex -0.74542 0.5167

tint.L.targethicon -0.09193 0.0461

tint.Q.targethicon -0.00722 0.0482
tint.L.agegp -0.13075 0.0492
tint.Q.agegp -0.06972 0.0520
tint.L.sex 0.09794 0.0492
tint.Q.sex -0.00542 0.0520
targethicon.agegp 0.13887 0.0584
targethicon.sex -0.07785 0.0584
agegp.-sex 0.33164 0.3261

)

DF
145
145
145
145

22

22
145
145
145
145
145
145
145
145

22

t-value
7.975
2.547
1.836
-2.378
-2.196
-1.443
-1.996
-0.150
-2.658
-1.341
1.991
-0.104
2.376
-1.332
1.017

Because tint isan ordered factor, polynomial contrasts are used.

11.1.3 The Michelson Speed of Light Data
Here is an example, using the Michelson speed of light data from the VVenables and Ripley MASSlibrary. The

model allows the determination to vary linearly with Run (from 1 to 20), with the slope varying randomly
between the five experiments of 20 runs each. We assume an autoregressive dependence structure of order 1.
We allow the variance to change from one experiment to another. Maximum likelihood tests suggest that one

p-value
4.17e-13
1.19e-02
6.84e-02
1.87e-02
3.90e-02
1.63e-01
4.78e-02
8.81e-01
8.74e-03
1.82e-01
4.83e-02
9.17e-01
1.88e-02
1.85e-01
3.20e-01

needs at least this complexity in the variance and dependence structure to represent the data accurately. A model
that has neither fixed nor random Run effects seems all that isjustified statistically. To test this, one needsto fit

models with and without these effects, setting method=""ML"’ in each case, and compare the likelihoods. (I

leave this as an exercise!) For purposes of doing thistest, afirst order autoregressive model would probably be
adequate. A model that ignores the sequential dependence entirely does give misleading results.
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> library(mass) # if needed
> data(michelson) # if needed
> michelson$Run <- as.numeric(michelson$Run) # Ensure Run is a variable
> mich.Imel <- Ime(fixed = Speed ~ Run, data = michelson,
random = ~ Run] Expt, correlation = corAR1(form = ~ 1 | Expt),
weights = varldent(form = ~ 1 | Expt))

> summary(mich. Imel)
Linear mixed-effects model fit by REML
Data: michelson

AIC BIC logLik

1113 1142 -546

Random effects:

Formula: ~Run | Expt

Structure: General positive-definite
StdDev Corr

(Intercept) 46.49 (Intr)

Run 3.62 -1

Residual 121.29

Correlation Structure: AR(1)
Formula: ~1 | Expt
Parameter estimate(s):
Phi
0.527
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | Expt
Parameter estimates:
1 2 3 4 5
1.000 0.340 0.646 0.543 0.501
Fixed effects: Speed ~ Run
Value Std.Error DF t-value p-value

(Intercept) 868 30.51 94 28.46 <.0001
Run -2 2.42 94 -0.88 0.381
Correlation:

(Intr)
Run -0.934

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.912 -0.606 0.109 0.740 1.810

Number of Observations: 100
Number of Groups: 5

11.2 Time Series Models

The R ts (time series) package has a number of functions for manipulating and plotting time series, and for
calculating the autocorrelation function.



There are (at least) two types of method — time domain methods and frequency domain methods. In the time
domain models may be conventional “short memory” models where the autocorrel ation function decays quite
rapidly to zero, or therelatively recently developed “long memory” time series models where the

autocorrel ation function decays very slowly as observations move apart intime. A characteristic of “long
memory” modelsisthat thereisvariation at all temporal scales. Thusin a study of wind speedsit may be
possible to characterise windy days, windy weeks, windy months, windy years, windy decades, and perhaps even
windy centuries. R does not yet have functions for fitting the more recently developed long memory models.

The function st () decomposes atimes seriesinto atrend and seasonal components, etc. The functionsar()
(for “autoregressive” models) and associated functions, and arima0() ( “autoregressive integrated moving
average models”) fit standard types of time domain short memory models. Note also the function gls() in the
nime library, which can fit relatively complex models that may have autoregressive, arima and various other
types of dependence structure.

The function spectrum() and related functionsis designed for frequency domain or “spectral” analysis.

11.3 Survival Analysis

For exampl e times at which subjects were either lost to the study or died (“failed”) may be recorded for
individualsin each of several treatment groups. Engineering or business failures can be modelled using this same
methodology. The R survival5 library has state of the art abilities for survival analysis.

11.4 Exercises

1. Use the function acF () to plot the autocorrelation function of lake levels in successive yearsin the data set
huron. Do the plots both with type="correlation” and with type=""partial”.
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*12. Advanced Programming Topics

12.1. Methods

R is an object-oriented language. Objects may have a“class’. For functions such as print(), summary(),
etc., the class of the object determines what action will be taken. Thus in response to print(x), R determines
the class attribute of X, if one exists. If for example the class attribute is “factor”, then the function which finally
handles the printing is print . factor(). Thefunction print.default() is used to print objects that
have not been assigned a class.

More generally, the class attribute of an object may be a vector of strings. If there are “ancestor” classes—
parent, grandparent, . . ., these are specified in order in subsequent elements of the class vector. For example,
ordered factors have the class “ ordered”, which inherits from the class “factor”. Thus:

> fac<-ordered(1:3)
> class(fac)
[1] "ordered" '"factor"

Here Fac hasthe class “ordered”, which inherits from the parent class “factor”.

Thefunction print.ordered(), which isthe function that is called when you invoke print() with an
ordered factor, makes use of the fact that “ordered” inherits from “factor”.

> print.ordered
function (X, quote = FALSE)

{
if (length(x) <= 0)
cat(""ordered(0)\n")
else print(levels(X)[x], quote = quote)
cat(“Levels: ", paste(levels(x), collapse = " < "), "\n")
invisible(x)
}

Note that it is a convenience for print.ordered() to cal print.factor(). The function
print.gIm(Q) doesnot cal print. Im(), even though glm objects inherit from Im objects.

12.2 Extracting Argumentsto Functions

How, inside a function, can one extract the value assigned to a parameter when the function was called? Below
thereisafunction extract.arg(). Whenitiscaled asextract.arg(a=xx), wewant it to return
“*xx”. When itiscalled asextract.arg(a=xy), we want it to return *xy””. Hereishow itisdone.

extract.arg <-
function (a)
{
S <- substitute(a)
as.character(s)

> extract.arg(a=xy)
[1] llxy"
If the argument is a function, we may want to get at the arguments to the function. Hereis how one can do it

deparse.args <-
function (a)

{

s <- substitute (a)

99



if(mode(s) == "call"){
# the First element of a "call”® is the function called
# so we don"t deparse that, just the arguments.
print(paste(“The function is: *“, s[1],”(”, collapse=""))
lapply (s[-1], function (X)
paste (deparse(x), collapse = "\n"))
}

else stop (“argument is not a function call'™)

For example:
> deparse.args(list(x+y, foo(bar)))
[1] "The function is: list Q"
[[111
[1] "x + y”

[[21]1
[1] "foo(bar)"

12.3 Parsing and Evaluation of Expressions
When R encounters an expression such as mean(x+y) or cbind(x,Yy), there are two steps:

1. Thetext string is parsed and turned into an expression, i.e. the syntax is checked and it is turned into code
that the R computing engine can more immediately evaluate.

2. The expression is evaluated.

Upon typing in
expression(mean(x+y))

the output is the unevaluated expression expression(mean(x+y)). Setting
my.exp <- expression(mean(x+y))

stores this unevaluated expression inmy .exp . The actual contents of my . exp are alittle different from what
isprinted out. R givesyou as much information as it thinks helpful.

Note that expression(mean(x+y)) is different from expression(“mean(x+y)’"), asisobvious
when the expression is evaluated. A text string isatext string is atext string, unless one explicitly changes it
into an expression or part of an expression.
Let’'s see how thisworksin practice
> X <- 101:110
y <- 21:30
my.exp <- expression(mean(x+y))
my.txt <- expression("'mean(x+y)"™)
eval (my.exp)
[1] 131
> eval(my.txt)
[1] "mean(x+y)"

>
>
>
>

What if we already have “mean(x+y)” stored in atext string, and want to turn it into an expression? The
answer isto use the function parse() , but indicate that the parameter is text rather than a file name. Thus

> parse(text=""mean(x+y)")
expression(mean(x + y))
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We store the expression in my . exp2, and then evaluate it
> my.exp2 <- parse(text="mean(x+y)')
> eval(my.exp2)
[1] 131
Here isafunction that creates a new data frame from an arbitrary set of columns of an existing data frame. Once

in the function, we attach the data frame so that we can leave off the name of the data frame, and use only the
column names

make.new.df <- function(old.df = austpop, colnames = c("NSW", "ACT™))
{
attach(old.df)
on.exit(detach(old.df))
argtxt <- paste(colnames, collapse = ",")
exprtxt <- paste(“'data.frame(’", argtxt, ')", sep = ")
expr <- parse(text = exprtxt)
df <- eval(expr)
names(df) <- colnames
df
}

To verify that the function does what it should, typein
> make.new.dfQ
NSW ACT
11904 3

Thefunction do.call() makesit possible to supply the function name and the argument list in separate text
strings. Whendo.call isused it is only necessary to use parse() in generating the argument list.

For example
make.new.df <-
function(old.df = austpop, colnames = c('NSW", "ACT'™))
{
attach(old.df)
on.exit(detach(old.df))
argtxt <- paste(colnames, collapse = ",")
listexpr <- parse(text=paste("list(", argtxt, "™)", sep = "))
df <- do.call(“data.frame”, eval(listexpr))
names(df) <- colnames
df

}

12.4 Plotting a mathematical expression

The following, given without explanation, illustrates some of the possibilities. It needs better error checking
than it has at present:

plotcurve <-
function(equation = "y = sqrt(1/(1+x"2))", ... ){
leftright <- strsplit(equation, split = "=")[[1]1]
left <- leftright[1] # The part to the left of the "="
right <- leftright[2] # The part to the right of the "="
expr <- parse(text=right)

101



xname <- all_vars(expr)
if(length(xname) > 1)stop(paste(*'There are multiple variables,
i.e.",paste(xname, collapse=" & '),
"on the right of the equation'™))
if(length(list(...))==0)assign(xname, 1:10)
else {
nam <- names(list(.-.))
if(nam!=xname)stop(*'Clash of variable names')
assign('x", list(.-)I[11D
assign(xname, X)
}
y <- eval(expr)
yexpr <- parse(text=left)[[1]1]
xexpr <- parse(text=xname)[[1]1]
plot(x, y, ylab = yexpr, xlab = xexpr, type="n'")

lines(spline(x,y))
mainexpr <- parse(text=paste(left, "==", right))
title(main = mainexpr)
}
Try
plotcurve()

plotcurve("'ang=asin(sqrt(p))', p=(1:49)/50)

12.4 Searching R functionsfor a specified token.

A token is a syntactic entity; for example function names are tokens. For example, we search all functionsin the
working directory. The purpose of using unl ist() in the code below isto change myfunc from alistinto a
vector of character strings.

mygrep <-

function(str)

{

## Assign the names of all objects in current R
## working directory to the string vector tempobj
Ht

tempobj <- Is(envir=sys.frame(-1))

objstring <- character(0)

for(i in tempobj) {

myfunc <- get(i)
if(is.function(myfunc))

if(length(grep(str,
deparse(myfunc))))
objstring <- c(objstring, i)
}
return(objstring)
}

mygrep(“for”) # Find all functions that include a for loop
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13. R Resources

13.1 R Packages for Windows
To get information on R packages (libraries), go to:
http://cran.r-project.org

The Australian link (accessible only to usersin Austraia) is:
http://mirror.aarnet.edu.au/pub/CRAN/

For Windows 95 etc binaries, look in
http://mirror.aarnet.edu.au/pub/CRAN/windows/windows-9x/

Look in the directory contrib for libraries.

New libraries are being added all thetime. So it paysto check the CRAN site from timeto time. Also, watch
for announcements on the electronic mailing lists r-help and r-announce.

13.2 Literaturewritten by expert users

Much literature that has been written for S-PLUS is highly relevant for R.

Burns, P. J. 1998. S Poetry.

This 439 page document is available from
http://www.seanet.com/~pburns/Spoetry/.

The styleisleisurely. However this assumes some prior knowledge of computing language terms. It may be a good book for
users with some initial knowledge of R.

Chambers, J. M. 1998. Programming with Data. A Guide to the S Language. Springer-Verlag, New Y ork.
Thisisabook for speciadists. It describes anew version of the S language that isthe basis for version 5 of S-PLUS.
Chambers, J. M. and Hastie, T. J. 1992. Statistical Modelsin S. Wadsworth and Brooks Cole Advanced Books
and Software, Pacific Grove CA.

Thisisthe basic reference on R and S-PLUS model formulae and models.

Everitt, B. S. 1994. A Handbook of Statistical Analyses using S-PLUS. Chapman and Hall, London.
The choice of analysis methods may seem idiosyncratic. It haslittle on the more recently developed methodology.

Harrell, F. 1997. An Introduction to S-PLUS and the Hmisc and Design Libraries.

The latest version of this manual is available from
http://heswebl._med.virginia.edu/biostat/s/index.html

Chapters 1-4 and 9-10 are agood introduction to S-PLUS, likely to be particularly helpful to anyone who comesto R or S-

PLUS from SAS. The examplesin this manual are largely medical.

Krause, A. and Olsen, M. 1997. The Basicsof Sand S-PLUS. Springer 1997.

Thisisan introductory book, at about the same level as Spector.

Venables, W.N., Smith, D.M. and the R Development Core Team. An Introductionto R. Noteson R: A

Programming Environment for Data Analysis and Graphics.
[A current version is available from CRAN sites. Thisis derived from an original set of notes written by Bill Venables and
Dave Smith for the S and S-PLUS environments.

Spector, P. 1994. An Introduction to S and S-PLUS. Duxbury Press.
Thisis areadable and compact beginner’'s guide to the S language.

Venables, W. N. and Ripley, B. D., 3nd edn 1999. Modern Applied Statisticswith S-PLUS. Springer, New
York.

This has become atext book for the use of S-PLUS and R for applied statistical analysis. It assumes afair level of statistical
sophistication. Explanation is careful, but often terse. Together with the ‘ Complements' it gives brief introductions to

extensive libraries of functions that have been written or adapted by Ripley, Venables, and a number of other statisticians.
Supplementary material ("Complements’) is available from

http://www._stats.ox.ac.uk/pub/MASS3/.
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The supplementary materia is extensive, and is continually supplemented. The present version of the statistical
“Complements’ has extensive information on new libraries that have come from third party sources.

Venables, W.N. and Ripley, B.D. 2000. S Programming. Springer 2000. Thisisaterse and careful
introduction to the dialects of the S language, including R.

R Development Core Team 1999. An Introduction to R.
This document is available from the CRAN sites noted in section 13.1.

13.3 The R-help electronic mail discussion list
Details of ther-help list, and of other lists that serve the R community, are available from the web site:
http://www_R-project.org/

13.4 Competing Systems— XLISP-STAT

XLISP-STAT isalisp-based system that, like S-PLUS and R, alows a seamless extensibility. Itisavailable
from

http://www.stat.umn.edu/~luke/xIs/xlIsinfo/xIsinfo.html

See also the code designed to accompany Cook and Weisherg's book “ Applied Regression Including Computing
and Graphics’ (Wiley 1999), available from

http://www_stat.umn.edu/arc
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14. Appendix 1

14.1 Data Sets Referred to in these Notes

Data sets accompanying these notes

Barley Cars93.summary ais anesthetic austpop
dewpoint dolphins elastichand florida hills
huron islandcities kiwishade leafshape milk
moths oddbooks orings possum primates
rainforest seedrates SOi tinting type.df

Data Set from Library ts
LakeHuron

Data Sets from Library BASE

airquality attitude cars islands

Data Sets from Library MASS

Aids2 Animals Cars93 PlantGrowth Rubber
cement cpus fal michelson mtcars
painters pressure ships

14.2 Answersto Selected Exercises

Section 1.6

1. plot(distance~stretch,data=el asticband)
2. (i), (iii), (iv)

plot(snow.cover ~ year, data = snow)
hist(snow$snow.cover)
hist(log(snow$snow.cover))

Section 2.8

1. The value of answer is (a) 12, (b) 22, (c) 600.
2. prod(c(10,3:5))
3(i) bigsum <- 0; for (i in 1:100) {bigsum <- bigsum+i }; bigsum
3(ii) sum(1:100)
4(i) bigprod <- 1; for (i in 1:50) {bigprod <- bigprod*i }; bigprod
4(ii) prod(1:50)
5. radius <- 3:20; volume <- 4*pi*radius~3/3
sphere.data <- data.frame(radius=radius, volume=volume)
6. sapply(tinting, is.factor)
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sapply(tinting[, 4:6], levels)
sapply(tinting[, 4:6], is.ordered)

Section 3.7

1.

2.

plot(Animals$body, Animals$brain, pch=1,
xlab=""Body weight (kg)",ylab="Brain weight (g)')

plot(log(Animals$body), log(Animals$brain),pch=1,
xlab="Body weight (kg)", ylab="Brain weight (g)", axes=F)
brainaxis <- 10"seq(-1,4)
bodyaxis <-10"seq(-2,4)
axis(1l, at=log(bodyaxis), lab=bodyaxis)
axis(2, at=log(brainaxis), lab=brainaxis)
box()
identify(log(Animals$body), log(Animals$brain), labels=row.names(Animals))

(See problem 4.)

3.

par(mfrow = c(1,2)), etc.

Section 7.9

o s~ wbdhPE

X <- seq(101,112) or x <- 101:112

rep(c(4,6,3),4)

c(rep(4,8),rep(6,7),rep(3,9)) or rep(c(4,6,3),c(8,7,9))
rep(seq(1,9),seq(1,9)) or rep(1:9, 1:9)

Use summary(airquality) to getthisinformation.

68277 51212 4
6(b)2 9 8 617 15 7

7.

8.

0.

10

airquality[airquality$0zone == max(airquality$0zone),]
airquality$Wind[airquality$0zone > quantile(airquality$0zone, -75)]
mean(snow$snow.cover[seq(2,10,2)])
mean(snow$snow.cover[seq(1,9,2)])

sapply(claims, is.factor)

levels(Cars93$Manufacturer), etc.

To check which are ordered factors, typein

sapply(claims, is.ordered)

. summary(airquality); summary(attitude); summary(cpus)

Comment on ranges of values, whether distributions seem skew, etc.

11.
12.
13.
14.

Ad

mtcars6<-mtcars[mtcars$cyl==6,]

Cars93[Cars93$Type==""Smal I”’|Cars93%$Type=="Sporty”,]

mat34 <- matrix(rep(c(4,6,3),4), nrow=3, ncol=4)

mat64 <- matrix(c(rep(4,8),rep(6,7),rep(3,9)), nrow=6, ncol=4)

ditional solutions will be included in later versions of this document.
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