
Time Series Analysis with R -
Part I

Walter Zucchini, Oleg Nenadić

Contents

1 Getting started 2
1.1 Downloading and Installing R . 2
1.2 Data Preparation and Import in R 2
1.3 Basic R–commands: Data Manipulation and Visualization 3

2 Simple Component Analysis 8
2.1 Linear Filtering of Time Series . 8
2.2 Decomposition of Time Series . 9
2.3 Regression analysis . 11

3 Exponential Smoothing 14
3.1 Introductionary Remarks . 14
3.2 Exponential Smoothing and Prediction of Time Series 14

4 ARIMA–Models 17
4.1 Introductionary Remarks . 17
4.2 Analysis of Autocorrelations and Partial Autocorrelations 17
4.3 Parameter–Estimation of ARIMA–Models 18
4.4 Diagnostic Checking . 19
4.5 Prediction of ARIMA–Models . 20

A Function Reference 22

1

Chapter 1

Getting started

1.1 Downloading and Installing R

R is a widely used environment for statistical analysis. The striking difference
between R and most other statistical software is that it is free software and that
it is maintained by scientists for scientists. Since its introduction in 1996, the
R–project has gained many users and contributors, which continously extend the
capabilities of R by releasing add–ons (packages) that offer previously not avail-
able functions and methods or improve the existing ones.
One disadvantage or advantage, depending on the point of view, is that R is
used within a command–line interface, which imposes a slightly steeper learning
curve than other software. But, once this burden hab been taken, R offers almost
unlimited possibilities for statistical data analysis.

R is distributed by the “Comprehensive R Archive Network” (CRAN) – it is
available from the url: http://cran.r-project.org. The current version of R (1.7.0,
approx. 20 MB) for Windows can be downloaded by selecting “R binaries” →
“windows” → “base” and downloading the file “rw1070.exe” from the CRAN–
website. R can then be installed by executing the downloaded file. The instal-
lation procedure is straightforward, one usually only has to specify the target
directory in which to install R. After the installation, R can be started like any
other application for Windows, that is by double–clicking on the corresponding
icon.

1.2 Data Preparation and Import in R

Importing data into R can be carried out in various ways – to name a few, R
offers means for importing ASCII and binary data, data from other applications or
even for database–connections. Since a common denominator for “data analysis”
(cough) seem to be spreadsheet applications like e.g. Microsoft Excel c©, the

2

CHAPTER 1. GETTING STARTED 3

remainder of this section will focus on importing data from Excel to R.
Let’s assume we have the following dataset tui as a spreadsheet in Excel. (The
dataset can be downloaded from http://134.76.173.220/tui.zip as a zipped Excel–
file).
The spreadsheet contains stock data for the TUI AG from Jan., 3rd 2000 to
May, 14th 2002, namely date (1st column), opening values (2nd column), highest
and lowest values (3rd and 4th column), closing values (5th column) and trading
volumes (6th column).
A convenient way of preparing the data is to clean up the table within Excel, so
that only the data itself and one row containing the column–names remain.
Once the data has this form, it can be exported as a CSV (“comma seperated
values”) file, e.g. to C:/tui.csv.
After conversion to a CSV–file, the data can be loaded into R. In our case, the
tui–dataset is imported by typing

tui <- read.csv("C:/tui.csv", header=T, dec=",", sep=";")

into the R–console. The right–hand side, read.csv(), is the R–command,
which reads the CSV–file (tui.csv). Note, that paths use slashes “/” instead of
backslashes. Further options within this command include header and dec, which
specify if the dataset has the first row containing column–names (header=T). In
case one does not have a naming row, one would use header=F instead. The
option dec sets the decimal seperator used in case it differs from a point (here a
comma is used as a decimal seperator).

1.3 Basic R–commands: Data Manipulation and

Visualization

The dataset is stored as a matrix–object with the name tui. In order to access
particular elements of objects, square brackets ([]) are used. Rows and colums
of matrices can be accessed with object[row,column].
The closing values of the TUI shares are stored in the 5th column, so they can
be selected with tui[,5]. A chart with the closing values can be created using
the plot() – command:

plot(tui[,5],type="l")

The plot() – command allows for a number of optional arguments, one of them
is type="l", which sets the plot–type to “lines”. Especially graphics commands
allow for a variety of additional options, e.g.:

plot(tui[,5], type="l",

lwd=2, col="red", xlab="time", ylab="closing values",

CHAPTER 1. GETTING STARTED 4

main="TUI AG", ylim=c(0,60))

0 100 200 300 400 500 600

0
10

20
30

40
50

60
TUI AG

time

cl
os

in
g

va
lu

es

Figure 1.1: Creating charts with the plot() – command

First it has to be noted that R allows commands to be longer than one line – the
plot() – command is evaluated after the closing bracket!
The option lwd=2 (line width) is used to control the thickness of the plotted
line and col="red" controls the colour used (a list of available colour–names for
using within this option can be obtained by typing colors() into the console).
xlab and ylab are used for labeling the axes while main specifies the title of the
plot. Limits of the plotting region from a to b (for the x–and y–axes) can be set
using the xlim=c(a,b) and/or ylim=c(a,b) options.
A complete list of available options can be displayed using the help– system of R.
Typing ?plot into the console opens the help–file for the plot() – command
(the helpfile for the graphical parameters is accessed with ?par). Every R–
function has a corresponding help–file which can be accessed by typing a question
mark and the command (without brackets). It contains further details about the
function and available options, references and examples of usage.
Now back to our TUI–shares. Assume that we want to plot differences of the
logarithms of the returns. In order to do so, we need two operators, log() which
takes logarithms and diff() which computes differences of a given object:

plot(diff(log(tui[,5])),type="l")

CHAPTER 1. GETTING STARTED 5

Operations in R can be nested (diff(log())) as in the example above – one
just needs to care about the brackets (each opening bracket requires a closing
one)!
Another aspect to time series is to investigate distributional properties. A first
step would be to draw a histogram and to compare it with e.g. the density of the
normal distribution:

Histogram of diff(tui[, 4])

diff(tui[, 4])

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

Figure 1.2: Comparing histograms with densities

The figure is created using following commands:

hist(diff(tui[,4]),prob=T,ylim=c(0,0.6),xlim=c(-5,5),col="red")

lines(density(diff(tui[,4])),lwd=2)

In the first line, the hist() – command is used for creating a histogramm of
the differences. The option prob=T causes the histogram to be displayed based
on relative frequencies. The other options (ylim, xlim and col) are solely for
enhancing the display. A nonparametric estimate of the density is added using
the function density() together with lines().
In order to add the density of the fitted normal distribution, one needs to esti-
mate the mean and the standard deviation using mean() and sd():

mu<-mean(diff(tui[,4]))

sigma<-sd(diff(tui[,4]))

CHAPTER 1. GETTING STARTED 6

Having estimated the mean and standard deviation, one additionally needs to
define x–values for which the corresponding values of the normal distribution are
to be calculated:

x<-seq(-4,4,length=100)

y<-dnorm(x,mu,sigma)

lines(x,y,lwd=2,col="blue")

seq(a,b,length) creates a sequence of length values from a to b – in this case
100 values from −4 to 4. The corresponding values of the normal distribution
for given µ and σ are then computed using the function dnorm(x,µ,σ). Adding
“lines” to existing plots is done with the function lines(x,y) – the major dif-
ference to plot(x,y) is that plot() clears the graphics–window.

Another option for comparison with the normal distribution is given using the
function qqnorm(diff(tui[,4])) which draws a quantile- quantile plot:

−3 −2 −1 0 1 2 3

−
2

0
2

4
6

8

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 1.3: Comparing empirical with theoretical quantiles

Without going too much into detail, the ideal case (i.e. normally distributed
observations) is given when the observations lie on the line (which is drawn using
abline(0,1)).

There are various means for testing normality of given data. The Kolmogorov-
Smirnoff test can be used to test if sample follows a specific distribution. In order

CHAPTER 1. GETTING STARTED 7

to test the normality of the differences of the logs from the TUI-shares, one can
use the function ks.test() together with the corresponding distribution name:

x<-diff(log(tui[,5]))

ks.test(x,"pnorm",mean(x),sd(x))

Since we want to compare the data against the (fitted) normal distribution, we
include "pnorm", mean(x) and sd(x) (as result we should get a significant devi-
ation from the normal distribution).
Unfortunately, the Kolmogorov–Smirnoff test does not take account of where
the deviations come from – causes for that range from incorrectly estimated pa-
rameters, skewness to leptocurtic distributions. Another possibility (for testing
normality) is to use the Shapiro–Test (which still does not take account of skew-
ness etc., but generally performs a bit better):

shapiro.test(x)

Since this test is a test for normality, we do not have to specify a distribution
but only the data which is to be tested (here the results should be effectively the
same, except for a slightly different p-value).

Chapter 2

Simple Component Analysis

2.1 Linear Filtering of Time Series

A key concept in traditional time series analysis is the decomposition of a given
time series Xt into a trend Tt, a seasonal component St and the remainder et.
A common method for obtaining the trend is to use linear filters on given time
series:

Tt =
∞∑

i=−∞
λiXt+i

A simple class of linear filters are moving averages with equal weights:

Tt =
1

2a + 1

a∑
i=−a

Xt+i

In this case, the filtered value of a time series at a given period τ is represented by
the average of the values {xτ−a, . . . , xτ , . . . , xτ+a}. The coefficients of the filtering
are { 1

2a+1
, . . . , 1

2a+1
}.

Applying moving averages with a = 2, 12, and 40 to the closing values of our
tui–dataset implies using following filters:

• a = 2 : λi = {1
5
, 1

5
, 1

5
, 1

5
, 1

5
}

• a = 12 : λi = { 1

25
, . . . ,

1

25
}

︸ ︷︷ ︸
25 times

• a = 40 : λi = { 1

81
, . . . ,

1

81
}

︸ ︷︷ ︸
81 times

8

CHAPTER 2. SIMPLE COMPONENT ANALYSIS 9

A possible interpretation of these filters are (approximately) weekly (a = 2),
monthly (a = 12) and quaterly (a = 40) averages of returns. The fitering is
carried out in R with the filter() – command.
One way to plot the closing values of the TUI shares and the averages in different
colours is to use the following code:

library(ts)

plot(tui[,5],type="l")

tui.1 <- filter(tui[,5],filter=rep(1/5,5))

tui.2 <- filter(tui[,5],filter=rep(1/25,25))

tui.3 <- filter(tui[,5],filter=rep(1/81,81))

lines(tui.1,col="red")

lines(tui.2,col="purple")

lines(tui.3,col="blue")

It creates the following output:

0 100 200 300 400 500 600

20
30

40
50

Index

tu
i[,

 4
]

Figure 2.1: Closing values and averages for a = 2, 12 and 40

2.2 Decomposition of Time Series

Another possibility for evaluating the trend of a time series is to use nonpara-
metric regression techniques (which in fact can be seen as a special case of linear

CHAPTER 2. SIMPLE COMPONENT ANALYSIS 10

filters). The function stl() performs a seasonal decomposition of a given time
series Xt by determining the trend Tt using “loess” regression and then calculat-
ing the seasonal component St (and the residuals et) from the differences Xt−Tt.
Performing the seasonal decomposition for the time series beer (monthly beer
production in Australia from Jan. 1956 to Aug. 1995) is done using the following
commands:

beer<-read.csv("C:/beer.csv",header=T,dec=",",sep=";")

beer<-ts(beer[,1],start=1956,freq=12)

plot(stl(log(beer),s.window="periodic"))

4.
2

4.
6

5.
0

5.
4

da
ta

−
0.

2
0.

0
0.

2

se
as

on
al

4.
5

4.
7

4.
9

5.
1

tr
en

d

−
0.

2
0.

0

1960 1970 1980 1990

re
m

ai
nd

er

time

Figure 2.2: Seasonal decomposition using stl()

First, the data is read from C:/beer.csv (the datafile is available for down-
load from http://134.76.173.220/beer.zip as a zipped csv-file). Then the data is
transformed into a ts – object. This “transformation” is required for most of
the time–series functions, since a time series contains more information than the
values itself, namely information about dates and frequencies at which the time
series has been recorded.

CHAPTER 2. SIMPLE COMPONENT ANALYSIS 11

2.3 Regression analysis

R offers the functions lsfit() (least squares fit) and lm() (linear models,
a more general function) for regression analysis. This section focuses on lm(),
since it offers more “features”, especially when it comes to testing significance of
the coefficients.
Consider again the beer – data. Assume that we wish to fit the following model
(a parabola) to the logs of beer:

log(Xt) = α0 + α1 · t + α2 · t2 + et

The fit can be carried out in R with the following commands:

lbeer<-log(beer)

t<-seq(1956,1995.2,length=length(beer))

t2<-t^2

plot(lbeer)

lm(lbeer~t+t2)

lines(lm(lbeer~t+t2)$fit,col=2,lwd=2)

Time

lb
ee

r

1960 1970 1980 1990

4.
2

4.
6

5.
0

5.
4

Figure 2.3: Fitting a parabola to lbeer using lm()

In the first row of the commands above, logarithms of beer are calculated and
stored as lbeer. Explanatory variables (t and t2 as t and t2) are defined in the

CHAPTER 2. SIMPLE COMPONENT ANALYSIS 12

second and third row. The actual fit of the model is done using lm(lbeer~t+t2).
The function lm() returns a list – object, whose element can be accessed using
the “$”–sign: lm(lbier~t+t2)$coefficients returns the estimated coefficients
(α0, α1 and α2); lm(lbier~t+t2)$fit returns the fitted values X̂t of the model.
Extending the model to

log(Xt) = α0 + α1 · t + α2 · t2 + β · cos

(
2 · π
12

)
+ γ · sin

(
2 · π
12

)
+ et

so that it includes the first Fourier frequency is straightforward. After defining
the two additional explanatory variables, cos.t and sin.t, the model can be
estimated in the “usual way”:

lbeer<-log(beer)

t<-seq(1956,1995.2,length=length(beer))

t2<-t^2

sin.t<-sin(2*pi*t)

cos.t<-cos(2*pi*t)

plot(lbeer)

lines(lm(lbeer~t+t2+sin.t+cos.t)$fit,col=4)

Time

lb
ee

r

1960 1970 1980 1990

4.
2

4.
6

5.
0

5.
4

Figure 2.4: Fitting a parabola and the first fourier frequency to lbeer

Note that in this case sin.t does not include 12 in the denominator, since 1
12

has
already been considered during the transformation of beer and the creation of t.

CHAPTER 2. SIMPLE COMPONENT ANALYSIS 13

Another important aspect in regression analysis is to test the significance of the
coefficients.
In the case of lm(), one can use the summary() – command:

summary(lm(lbeer t+t2+sin.t+cos.t))

which returns the following output:

Call:
lm(formula = lbeer ~ t + t2 + sin.t + cos.t)

Residuals:
Min 1Q Median 3Q Max

-0.331911 -0.086555 -0.003136 0.081774 0.345175

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.833e+03 1.841e+02 -20.815 <2e-16 ***
t 3.868e+00 1.864e-01 20.751 <2e-16 ***
t2 -9.748e-04 4.718e-05 -20.660 <2e-16 ***
sin.t -1.078e-01 7.679e-03 -14.036 <2e-16 ***
cos.t -1.246e-02 7.669e-03 -1.624 0.105

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1184 on 471 degrees of freedom
Multiple R-Squared: 0.8017, Adjusted R-squared: 0.8
F-statistic: 476.1 on 4 and 471 DF, p-value: < 2.2e-16

Apart from the coefficient estimates and their standard error, the output also
includes the corresponding t-statistics and p–values. In our case, the coefficients
α0 (Intercept), α1 (t), α2 (t2) and β (sin(t)) differ significantly from zero, while
γ does not seem to (one would include γ anyway, since Fourier frequencies are
always kept in pairs of sine and cosine).

Chapter 3

Exponential Smoothing

3.1 Introductionary Remarks

A natural estimate for predicting the next value of a given time series xt at the
period t = τ is to take weighted sums of past observations:

x̂(t=τ)(1) = λ0 · xτ + λ1 · xτ−1 + . . .

It seems reasonable to weight recent observations more than observations from
the past. Hence, one possibility is to use geometric weights

λi = α(1− α)i ; 0 < α < 1

such that x̂(t=τ)(1) = α · xτ + α(1− α) · xτ−1 + α(1− α)2 · xτ−2 + . . .

Exponential smoothing in its basic form (the term “exponential” comes from
the fact that the weights decay exponentially) should only be used for time series
with no systematic trend and/or seasonal components. It has been generalized
to the “Holt–Winters”–procedure in order to deal with time series containg trend
and seasonal variation. In this case, three smoothing parameters are required,
namely α (for the level), β (for the trend) and γ (for the seasonal variation).

3.2 Exponential Smoothing and Prediction of

Time Series

The ts – library in R contains the function HoltWinters(x,alpha,beta,gamma),
which lets one perform the Holt–Winters procedure on a time series x. One can
specify the three smoothing parameters with the options alpha, beta and gamma.
Particular components can be excluded by setting the value of the correspond-
ing parameter to zero, e.g. one can exclude the seasonal component by using

14

CHAPTER 3. EXPONENTIAL SMOOTHING 15

gamma=0. In case one does not specify smoothing parameters, these are deter-
mined “automatically” (i.e. by minimizing the mean squared prediction error
from one–step forecasts).

Thus, exponential smoothing of the beer – dataset could be performed as follows
in R:

beer<-read.csv("C:/beer.csv",header=T,dec=",",sep=";")

beer<-ts(beer[,1],start=1956,freq=12)

This loads the dataset from the CSV–file and transforms it to a ts – object.

HoltWinters(beer)

This performs the Holt–Winters procedure on the beer – dataset. As result, it
displays a list with e.g. the smoothing parameters (which should be α ≈ 0.076,
β ≈ 0.07 and γ ≈ 0.145 in this case). Another component of the list is the enty
fitted, which can be accessed with HoltWinters(beer)$fitted:

plot(beer)

lines(HoltWinters(beer)$fitted,col="red")

Time

be
er

1960 1970 1980 1990

10
0

15
0

20
0

Figure 3.1: Exponential smoothing of the beer–dataset

R offers the function predict(), which is a generic function for predictions from
various models. In order to use predict(), one has to save the “fit” of a model

CHAPTER 3. EXPONENTIAL SMOOTHING 16

to an object, e.g.:

beer.hw<-HoltWinters(beer)

In this case, we have saved the “fit” from the Holt–Winters procedure on beer

as beer.hw.

predict(beer.hw,n.ahead=12)

gives us the predicted values for the next 12 periods (i.e. Sep. 1995 to Aug.
1996). The following commands can be used to create a graph with the predic-
tions for the next 4 years (i.e. 48 months):

plot(beer,xlim=c(1956,1999))

lines(predict(beer.hw,n.ahead=48),col=2)

Time

be
er

1960 1970 1980 1990 2000

10
0

15
0

20
0

Figure 3.2: Predicting beer with exponential smoothing

Chapter 4

ARIMA–Models

4.1 Introductionary Remarks

Forecasting based on ARIMA (autoregressive integrated moving averages) mod-
els, commonly know as the Box–Jenkins approach, comprises following stages:

i.) Model identification

ii.) Parameter estimation

iii.) Diagnostic checking

These stages are repeated until a “suitable” model for the given data has been
identified (e.g. for prediction). The following three sections show some facilities
that R offers for assisting the three stages in the Box–Jenkins approach.

4.2 Analysis of Autocorrelations and Partial Au-

tocorrelations

A first step in analyzing time series is to examine the autocorrelations (ACF) and
partial autocorrelations (PACF). R provides the functions acf() and pacf()

for computing and plotting of ACF and PACF. The order of “pure” AR and MA
processes can be identified from the ACF and PACF as shown below:

sim.ar<-arima.sim(list(ar=c(0.4,0.4)),n=1000)

sim.ma<-arima.sim(list(ma=c(0.6,-0.4)),n=1000)

par(mfrow=c(2,2))

acf(sim.ar,main="ACF of AR(2) process")

acf(sim.ma,main="ACF of MA(2) process")

pacf(sim.ar,main="PACF of AR(2) process")

pacf(sim.ma,main="PACF of MA(2) process")

17

CHAPTER 4. ARIMA–MODELS 18

0 5 10 20 30

0.
0

0.
8

Lag

A
C

F

ACF of AR(2) process

0 5 10 20 30

−
0.

2
1.

0

Lag

A
C

F

ACF of MA(2) process

0 5 10 20 30

0.
0

0.
6

Lag

P
ar

tia
l A

C
F

PACF of AR(2) process

0 5 10 20 30
−

0.
4

0.
1

Lag

P
ar

tia
l A

C
F

PACF of MA(2) process

Figure 4.1: ACF and PACF of AR– and MA–models

The function arima.sim() was used to simulate ARIMA(p,d,q)–models ; in
the first line 1000 observations of an ARIMA(2,0,0)–model (i.e. AR(2)–model)
were simulated and saved as sim.ar. Equivalently, the second line simulated
1000 observations from a MA(2)–model and saved them to sim.ma.
An useful command for graphical displays is par(mfrow=c(h,v)) which splits
the graphics window into (h×v) regions — in this case we have set up 4 seperate
regions within the graphics window.
The last four lines created the ACF and PACF plots of the two simulated pro-
cesses. Note that by default the plots include confidence intervals (based on
uncorrelated series).

4.3 Parameter–Estimation of ARIMA–Models

Once the order of the ARIMA(p,d,q)–model has been specified, the function
arima() from the ts–library can be used to estimate the parameters:

arima(data,order=c(p,d,q))

Fitting e.g. an ARIMA(1,0,1)–model on the LakeHuron–dataset (annual lev-
els of the Lake Huron from 1875 to 1972) is done using

CHAPTER 4. ARIMA–MODELS 19

data(LakeHuron)

fit<-arima(LakeHuron,order=c(1,0,1))

Here, fit is a list containing e.g. the coefficients (fit$coef), residuals (fit$residuals)
and the Akaike Information Criterion AIC (fit$aic).

4.4 Diagnostic Checking

A first step in diagnostic checking of fitted models is to analyze the residuals from
the fit for any signs of non–randomness. R has the function tsdiag(), which
produces a diagnostic plot of a fitted time series model:

fit<-arima(LakeHuron,order=c(1,0,1))

tsdiag(fit)

It produces following output containing a plot of the residuals, the autocorre-
lation of the residuals and the p-values of the Ljung–Box statistic for the first 10
lags:

Standardized Residuals

Time

1880 1900 1920 1940 1960

−
2

1

0 5 10 15

−
0.

2
0.

6

Lag

A
C

F

ACF of Residuals

2 4 6 8 10

0.
0

0.
6

p values for Ljung−Box statistic

lag

p
va

lu
e

Figure 4.2: Output from tsdiag

CHAPTER 4. ARIMA–MODELS 20

The Box–Pierce (and Ljung–Box) test examines the Null of independently dis-
tributed residuals. It’s derived from the idea that the residuals of a “correctly
specified” model are independently distributed. If the residuals are not, then
they come from a miss–specified model. The function Box.test() computes
the test statistic for a given lag:

Box.test(fit$residuals,lag=1)

4.5 Prediction of ARIMA–Models

Once a model has been identified and its parameters have been estimated, one
purpose is to predict future values of a time series. Lets assume, that we are
satisfied with the fit of an ARIMA(1,0,1)–model to the LakeHuron–data:

fit<-arima(LakeHuron,order=c(1,0,1))

As with Exponential Smoothing, the function predict() can be used for pre-
dicting future values of the levels under the model:

LH.pred<-predict(fit,n.ahead=8)

Here we have predicted the levels of Lake Huron for the next 8 years (i.e. until
1980). In this case, LH.pred is a list containing two entries, the predicted values
LH.pred$pred and the standard errors of the prediction LH.pred$se. Using a
rule of thumb for an approximate confidence interval (95%) of the prediction,
“prediction ± 2·SE”, one can e.g. plot the Lake Huron data, predicted values
and an approximate confidence interval:

plot(LakeHuron,xlim=c(1875,1980),ylim=c(575,584))

LH.pred<-predict(fit,n.ahead=8)

lines(LH.pred$pred,col="red")

lines(LH.pred$pred+2*LH.pred$se,col="red",lty=3)

lines(LH.pred$pred-2*LH.pred$se,col="red",lty=3)

First, the levels of Lake Huron are plotted. To leave some space for adding
the predicted values, the x-axis has been “limited” from 1875 to 1980 with
xlim=c(1875,1980) ; the use of ylim is purely for cosmetic purposes here. The
prediction takes place in the second line using predict() on our fitted model.
Adding the prediction and the approximate confidence interval is done in the
last three lines. The confidence bands are drawn as a red, dotted line (using the
options col="red" and lty=3):

CHAPTER 4. ARIMA–MODELS 21

Time

La
ke

H
ur

on

1880 1900 1920 1940 1960 1980

57
6

57
8

58
0

58
2

58
4

Figure 4.3: Lake Huron levels and predicted values

Appendix A

Function Reference

abline() Graphics command p. 6
acf() Estimation of the autocorrelation function p. 17
arima() Fitting ARIMA–models p. 18
arima.sim() Simulation of ARIMA–models p. 17
Box.test() Box–Pierce and Ljung–Box test p. 20
c() Vector command p. 5
cos() Cosine p. 12
density() Density estimation p. 5
diff() Takes differences p. 4
dnorm() Normal distribution p. 6
filter() Filtering of time series p. 9
hist() Draws a histogram p. 5
HoltWinters() Holt–Winters procedure p. 14
ks.test() Kolmogorov–Smirnov test p. 5
length() Vector command p. 12
lines() Graphics command p. 5
lm() Linear models p. 11
log() Calculates logs p. 4
lsfit() Least squares estimation p. 11
mean() Calculates means p. 5
pacf() Estimation of the partial autocorrelation function p. 17
plot() Graphics command p. 3
predict() Generic function for prediction p. 15
read.csv() Data import from CSV–files p. 3
rep() Vector command p. 9
sd() Standard deviation p. 5
seq() Vector command p. 6
shapiro.test() Shapiro–Wilk test p. 7
sin() Sine p. 12
stl() Seasonal decomposition of time series p. 10
summary() Generic function for summaries p. 13
ts() Creating time–series objects p. 10
tsdiag() Time series diagnostic p. 19
qqnorm() Quantile–quantile plot p. 6

22

	Getting started
	Downloading and Installing R
	Data Preparation and Import in R
	Basic R--commands: Data Manipulation and Visualization

	Simple Component Analysis
	Linear Filtering of Time Series
	Decomposition of Time Series
	Regression Analysis

	Exponential Smoothing
	Introductionary Remarks
	Exponential Smoothing and Prediction of Time Series

	ARIMA-Models
	Introductionary Remarks
	Analysis of Autocorrelations and Partial Autocorrelations
	Parameter-Estimation of ARIMA-Models
	Diagnostic Checking
	Prediction of ARIMA-Models

