> #
> ###################################################################################################
> #Regressão logística entre a proporção de herbivoros predados e a densidade de herbivoros oferecidos
> #
> pred<-c(1,2,2,3,1,4,2,3,2,3,5,6,5,5,3,7,7,6,2
+ ,3,15,12,14,12,11,11,11,13,13,13,18,14,27,26
+ ,17,18,20,22,10,15,29,30,36,40,23,50,30,40,29,52)##Número de herbívoros predados
> dens<-sort(rep(2^(2:6),10))#### Densidade de herbivoros oferecidos
> ##
> ##Regressão pred/dens = exp(P0+P1*N+P2*N^2+P3*N3)/1+ exp(P0+P1*N+P2*N^2+P3*N3)
> p.model1<-glm(pred/dens~dens+I(dens^2)+I(dens^3),family="binomial")
Mensagens de aviso perdidas:
In eval(expr, envir, enclos) : #sucessos não-inteiro em um glm binomial!
> summary(p.model1)
Call:
glm(formula = pred/dens ~ dens + I(dens^2) +
I(dens^3), family = "binomial")
Deviance Residuals:
Min 1Q Median 3Q Max
-0.85240 -0.17292 -0.05812 0.19453 1.10008
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.744e-01 1.231e+00 -0.467 0.641
dens 2.238e-01 2.244e-01 0.997 0.319
I(dens^2) -8.846e-03 9.018e-03 -0.981 0.327
I(dens^3) 8.671e-05 9.154e-05 0.947
0.344
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 8.1347 on 49 degrees of
freedom
Residual deviance: 6.8751 on 46 degrees of freedom
AIC: 67.087
Number of Fisher Scoring iterations: 4
> #
Mas é exatamente o seu exemplo que eu procurava, pois eu queria os coeficientes de P0, P1, P2 e P3, seguindo sua ajuda:
>
naoPred<-dens-pred
> p.model2<-glm(cbind(pred, naoPred)~poly(dens, 3, raw=TRUE), family='binomial')
> summary(p.model2)
Call:
glm(formula = cbind(pred, naoPred) ~ poly(dens, 3, raw = TRUE),
family = "binomial")
Deviance Residuals:
Min 1Q Median 3Q Max
-3.2393 -0.9997 -0.0732 0.9515 4.2567
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept)
-8.399e-01 4.949e-01 -1.697 0.089672 .
poly(dens, 3, raw = TRUE)1 2.688e-01 7.444e-02 3.611 0.000305 ***
poly(dens, 3, raw = TRUE)2 -1.055e-02 2.755e-03 -3.828 0.000129 ***
poly(dens, 3, raw = TRUE)3 1.033e-04 2.681e-05 3.853 0.000117 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 148.29 on 49 degrees of freedom
Residual deviance: 121.77 on 46 degrees of freedom
AIC: 280.61
Number of Fisher Scoring iterations: 4
> #
Obrigado pelas dicas e correções,
Alexandre