Prezados,

À guisa de uma síntese das referências que enviei anteriormente...

O problema maior da regressão logística é que diversos autores têm demonstrado que ela inflaciona os resultados de probabilidades nas associações entre exposições e desfechos. Mas antes de concluir sobre isso, talvez alguma teoria da Epidemiologia seja necessária.

Matematicamente, a função de ligação da regressão logística (logit) gera como coeficiente a razão de chances. Sob o ponto de vista teórico, essa razão de produtos cruzados tem sido criticada por diversos epidemiologistas por não representar absolutamente nada em um processo saúde-doença: ela não representa qualquer indicador referenciável epidemiologicamente. Indicadores epidemiológicos são, basicamente, de morbidade (medida de doença) e mortalidade. Os dois principais indicadores de morbidade são a prevalência (resultado de estudo transversal) e incidência (fruto de delineamento longitudinal).

Existem as razões de prevalência e de incidência, que sob um ponto de vista teórico estaria mais compatível com os pressupostos da Epidemiologia. Estas razões também são chamadas de risco relativo. A função de ligação "log" fornece coeficientes de regressão que são essas razões. Por isso a recomendação atual de se utilizar regressão log-binomial ou Poisson em modelos epidemiológicos.

Além desses pressupostos de ordem mais teórica, há evidências estatísticas que vêm sendo divulgadas nestes artigos e outros muitos. A razão de chances aumenta muito quando temos uma prevalência/incidência da doença >20%, em relação à razão de risco. Dessa forma, a razão de chances tem sido delatada como uma medida que superestima efeitos de um fator causal sobre a variável resposta em modelos.

Espero que o "ruído" possa, agora, ser mais audível. :D

Há braços,

Marcos

Em 7 de fevereiro de 2017 22:22, Leonard Assis via R-br <r-br@listas.c3sl.ufpr.br> escreveu:
Tem ruído aí nesta explicação. Na verdade, o que o "epidemiologista" alegou, não me convenceu.


Em 7 de fev de 2017 9:14 PM, "Marcos Bissoli via R-br" <r-br@listas.c3sl.ufpr.br> escreveu:
Prezados,

De antemão peço desculpas se desvio o tópico da lista. Mas creio que o tema da mensagem é minimamente transversal aos aqui tratados.

Tenho uma variável resposta binária. Como a frequência da resposta é alta (38,11%), teóricos da Estatística aplicada à Epidemiologia sugerem que não seja usada uma regressão logística. Neste caso (de alta prevalência do desfecho), a primeira opção deveria ser uma log-binomial. Mas (e isso não é raro de ocorrer), minha log-binomial não apresentou convergência.

Quando não há convergência, os teóricos sugerem uma regressão de Poisson com variância robusta. Entretanto, como meus dados sugerem subdispersão, optei por um modelo de quasi-poisson. Isso já deu certo em outras análises que fiz para terceiros. Inclusive, tenho conseguido adaptar a variância robusta ao modelo de quasi-poisson. Mas justamente agora, com os dados de minha tese...

O diagnóstico visual está, ao meu ver, péssimo, para ajuste. A imagem anexa é do modelo de quasi-poisson. Mas experimentei todos os acima citados (logística e Poisson) e o gráfico não diferiu muito.

Imagem inline 1

A dúvida é... Há alguma outra alternativa de técnica de regressão que eu poderia tentar? Minhas variáveis explicativas são diversas, em quantidade e tipo (há contínuas, ordinais e binárias). Ou será (embora eu ache pouco provável) que este gráfico não significa um grande incômodo?

Fiz o teste de qui-quadrado da deviance residual e estranhamente o valor p está resultando em 1, tanto para Poisson quanto para quasi-Poisson. Um outro fato estranho é o pseudo R² de Nagelkerke ter acusado 20%: todas as outras minhas variáveis resposta não passaram de 12%. Não sei se é correto (consultei bibliografia que sugeria isso para a regressão logística), mas apliquei um teste de Hosmer e Lemeshow e ele acusou um bom ajuste do modelo, também (p = 0,2718). Até uma curva de ROC eu fiz e a área está grande no gráfico (mais uma técnica que não sei se deve ser aplicada além da regressão logística,).

Seguem alguns resultados, caso possa ajudar em algo.

Desde já agradeço qualquer comentário. E reforço minhas desculpas caso eu tenha desviado do tópico além do esperado, e desde já acato qualquer negativa em prosseguir o debate. Nesse caso, se possível, aceitaria sugestões de boas listas para debates nesse nível onde eu pudesse me inscrever.

Há braços,

Marcos Bissoli
Faculdade de Nutrição
Unifal-MG

> Mod1 <- glm(Tabagismo~.,data = TabModelagem,family = quasipoisson)
> summary(Mod1)

Call:
glm(formula = Tabagismo ~ ., family = quasipoisson, data = TabModelagem)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.4867  -0.7821  -0.5889   0.5349   1.6624  

Coefficients:
                                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)                     -1.245e+00  8.738e-01  -1.424 0.154644    
factor.SexoDic.1                 5.800e-01  8.273e-02   7.011 4.11e-12 ***
factor.Branca.1                 -8.332e-01  7.836e-01  -1.063 0.287863    
factor.Negra.1                  -8.210e-01  7.987e-01  -1.028 0.304185    
factor.Parda.1                  -9.009e-01  7.863e-01  -1.146 0.252163    
factor.Amarela.1                -1.089e+00  8.481e-01  -1.284 0.199466    
factor.SemReligiao.1            -9.670e-02  1.888e-01  -0.512 0.608566    
factor.Catolica.1               -4.813e-01  1.862e-01  -2.585 0.009863 ** 
factor.Espirita.1               -1.235e-01  2.181e-01  -0.566 0.571230    
factor.Evangelica.1             -9.177e-01  2.429e-01  -3.779 0.000166 ***
factor.AfroBrasileira.1          6.068e-01  4.303e-01   1.410 0.158794    
factor.Turno.1                   1.534e-03  1.034e-01   0.015 0.988169    
factor.Aposentado.1             -4.516e-02  1.055e-01  -0.428 0.668597    
factor.OcupaEstDiApenasDesemp.1  7.249e-02  1.411e-01   0.514 0.607474    
factor.ComFamilia.1             -4.323e-01  2.128e-01  -2.031 0.042444 *  
factor.ComOutParentes.1         -5.029e-01  3.517e-01  -1.430 0.153011    
factor.Republica.1               8.985e-03  1.959e-01   0.046 0.963429    
factor.Sozinho.1                -2.475e-01  2.236e-01  -1.107 0.268673    
factor.Pensao.1                 -8.439e-01  4.000e-01  -2.110 0.035106 *  
factor.OutroMoradia.1           -5.262e-01  3.353e-01  -1.569 0.116880    
factor.RU.1                     -1.937e-01  1.059e-01  -1.830 0.067589 .  
factor.praec4.1                 -1.583e-01  2.666e-01  -0.594 0.552951    
IdadeA                           3.787e-02  9.381e-03   4.037 5.79e-05 ***
escola                           8.576e-02  3.441e-02   2.492 0.012836 *  
RendaPC                          4.045e-05  1.313e-05   3.080 0.002119 ** 
Dist                             2.605e-05  1.296e-04   0.201 0.840689    
PraecSoma                        2.419e-02  3.086e-02   0.784 0.433427    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for quasipoisson family taken to be 0.6036898)

    Null deviance: 834.67  on 1135  degrees of freedom
Residual deviance: 706.16  on 1109  degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 5



-- 
MARCOS BISSOLI

Faculdade de Nutrição
Universidade Federal de Alfenas

Blog: bocademiamaldita.blogspot.com/
E-mail: mbissoli@gmail.com
Twitter: #mbissoli

Alfenas, Minas Gerais, Brasil


*****Pense na Natureza antes de Imprimir*****
Divulgue ON-LINE

Eu apoio a ENEN "na luta por um Brasil sem fome"

"por ĉiu popolo ties propran lingvon, por ĉiuj popoloj la esperantan"
(para cada povo sua própria língua, para todos os povos o Esperanto)

E nunca votarei no PSDB/DEM!

_______________________________________________
R-br mailing list
R-br@listas.c3sl.ufpr.br
https://listas.inf.ufpr.br/cgi-bin/mailman/listinfo/r-br
Leia o guia de postagem (http://www.leg.ufpr.br/r-br-guia) e forneça código mínimo reproduzível.

_______________________________________________
R-br mailing list
R-br@listas.c3sl.ufpr.br
https://listas.inf.ufpr.br/cgi-bin/mailman/listinfo/r-br
Leia o guia de postagem (http://www.leg.ufpr.br/r-br-guia) e forneça código mínimo reproduzível.



--
MARCOS BISSOLI

Faculdade de Nutrição
Universidade Federal de Alfenas

Blog: bocademiamaldita.blogspot.com/
E-mail: mbissoli@gmail.com
Twitter: #mbissoli

Alfenas, Minas Gerais, Brasil


*****Pense na Natureza antes de Imprimir*****
Divulgue ON-LINE

Eu apoio a ENEN "na luta por um Brasil sem fome"

"por ĉiu popolo ties propran lingvon, por ĉiuj popoloj la esperantan"
(para cada povo sua própria língua, para todos os povos o Esperanto)

E nunca votarei no PSDB/DEM!