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ScottKnott: A Package for Performing
the Scott-Knott Clustering Algorithm
in R
Enio G. Jelihovschi and José Cláudio Faria

Abstract Scott-Knott is an exploratory cluster-
ing algorithm used in the ANOVA context, when
the researcher is comparing treatment means,
with a very important characteristic: it does not
present any overlapping in its grouping results.
We wrote a code, in R, that performs this algo-
rithm starting from vectors, data.frame, aov or
aov.list objects. The results are presented with
letters representing groups as well as in graphical
way using different colors to differentiate among
the distinct groups.

Introduction

The Scott-Knott (SK) algorithm is a hierarchical clus-
tering algorithm used as an exploratory data analysis
tool. It was designed to help researchers working with
an ANOVA experiment designed to compare treat-
ment means, to find distinct homogeneous groups of
those means whenever the situation leads to a signif-
icant F-test.

All multiple comparison procedures which are used
to solve that problem usually divide the set of treat-
ment means in groups which are not completely dis-
tinct, many treatments end up belonging to diffe-
rent groups simultaneously, this is called overlapping
(Calinski and Corsten, 1985).

In fact, as the number of treatments increases, so
do the number of overlapping making it difficult for
the experimental users to distinguish the real groups
to which the treatments should belong. The division
of the treatments in completely distinct groups is the
most important solution in this case for them. Even
though the goal of multiple comparison methods is an
all-pair comparison, not a division of the treatment
means into groups, the biologists, plant breeders and
many others expect those tests to do that for them.

The possibility of using cluster analysis in place
of multiple comparison procedures was suggested by
O’Neill and Wetherill (1971) since the results of clus-
ter analysis type of solution would divide the treat-
ments into distinct groups.

The SK algorithm is a hierarchical cluster analysis
approach used to partition the treatments into dis-
tinct groups. Many other hierarchical cluster analysis
approaches have been proposed since Scott, A.J. and
Knott, M. (Scott and Knott, 1974) published their re-
sults, as for example Jollife (1975), Cox and Spjotvoll
(1982), and Calinski and Corsten (1985). However,

the SK approach has been the most widely used due
to the simple intuitive appeal of its idea, and also the
good results it always gives (Gates and Bilbro, 1978;
Bony et al., 2001; Dilson et al., 2002; Jyotsna et al.,
2003).

The SK procedure uses a clever algorithm of clus-
ter analysis, where, starting from the whole group of
observed mean effects, it divides, and keep dividing
the sub-groups in such a way that the intersection
of any two groups formed in that manner is empty.
Using A. J. Scott and M. Knott own words: “we
study the consequences of using a well-known method
of cluster analysis to partition the sample treatment
means in a balanced design and show how a corres-
ponding likelihood ratio test gives a method of judg-
ing the significance of the difference among groups
obtained” (Scott and Knott, 1974).

Simulation studies show that the performance of
the SK procedure, compared to the multiple compar-
ison procedures is very good (Da Silva et al., 1999;
Borges and Ferreira, 2003).

We try to motivate the reader into the practice
of the SK algorithm by bringing a real data ex-
ample and compare the SK with other procedures,
namely the Tukey test (package agricolae) and clus-
tering (hclust, package stats).

This paper illustrates the use of the ScottKnott
R package, which implements the SK procedure
(Scott and Knott, 1974). The package is available
on the Comprehensive R Archive Network (CRAN)
website at http://CRAN.R-project.org/package=

ScottKnott.
The R Package ScottKnott is composed of two

methods, SK and SK.nest. The method SK per-
forms the algorithm on treatments of main factors
and SK.nest does the same on nested designs of facto-
rial, split-plot and split-split-plot experiments. They
return objects of class SK, and SK.nest containing
the groups of means plus other variables necessary
for summary and plot.

The generic functions summary and plot are used
to obtain and print a summary and a plot.

Real data study

As a motivation we will use an experiment conducted
at EMBRAPA Milho e Sorgo (The Brazilian Agricul-
tural Research Corporation, Corn and Sorghum Sec-
tion). It was published in Ramalho et al. (2000) page
167. The experiment consists of 16 treatments (cul-
tivars) of sorghum conducted in a balanced squared

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

http://CRAN.R-project.org/package=ScottKnott
http://CRAN.R-project.org/package=ScottKnott


Contributed Article 2

lattice design and the yield by plot (kg/plot). For
our purposes, it can be considered a incomplete ran-
domized block design with 4 blocks, 16 treatments,
and 5 repetitions, that is, the yield of each treatment
is measured 5 times. This data is available in the
ScottKnott package as sorghum.

The objective of this study is to compare the 16
treatment means, as a first step of the whole analysis,
and the question is: are there groups of treatments
which could be considered homogeneous? In other
words, would it be possible to find groups for which
the treatment means belonging to those groups re-
present cultivars yielding the same weight of sorghum
and the differences in the observed results being due
to random variability?

We understand that this way of questioning is very
important for the agricultural researcher and might
be even more important than testing for the diffe-
rence between treatment means for every pair of those
means. There are 120 of such pairs.

Even though this first study is just exploratory it
will give the researcher the insight he(she) needs to
continue the analysis further on.

This exploratory analysis was carried out using
the SK algorithm whose results were compared to two
other methods.

> av <- aov(y ~ r/bl + x, data = sorghum$dfm)

> sk <- SK(av, which = "x", sig.level = 0.05)

The first is the function hclust found in the pack-
age stats which performs hierarchical cluster analysis
on a set of dissimilarities. The agglomeration method
used was “ward”. We calculated the mean value of
the 5 repetitions for each treatment and used it in the
function hclust.

> cl.m <- hclust(dist(sorghum.cl.m),

+ "ward")

The second, was the Tukey’s HSD test which is a
multiple comparison procedure but also used by re-
searchers as a method to divide the treatment means
in group. The package agricolae was used.

> tk.ag <- HSD.test(av, "x", group = TRUE,

+ alpha = 0.05)

> bar.group(tk.ag, ylim = c(0, 12),

+ density = 4, border = "blue")

Figure 1 shows the result of the SK algorithm. It di-
vided the means in two groups. The two main groups
found using the function hclust (Figure 2) are not ex-
actly the same as those found using the SK algorithm,
but are similar as it should be expected. The treat-
ment means 14,8,5,7,9,3 belong to the same group in
both figures, and the treatments 1,2,4 which belong
to the same group of the above treatments in figure 1,
but in figure 2 they belong to the second main group.
Nevertheless, they are grouped together at the lowest
level. The function hclust cuts at the big gap be-
tween treatments 9 and 3 and the function SK at the
big gap between treatments 2 and 12.

Figure 1: Yield of sorghum using Skott-Knott algo-
rithm, α = 5%.

Figure 2: Yield of sorghum using hclust, method =
ward.

Figure 3: Yield of sorghum using Tukey, α = 5%.

Figure 3 shows the result by using the Tukey’s
HSD test. It finds 3 groups, marked by the letters a,b
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and c. Almost all the treatments are classified to the
3 groups and this overlapping makes it very difficult
for the researcher to decide in which groups to sort
those means.

What makes the SK algorithm more convenient
for a user of ANOVA is that besides dividing the
treatments in groups without overlapping, its result
also uses a probabilistic approach in order to find the
groups: the SK algorithm takes the maximum of be-
tween groups sum of squares which is used in a like-
lihood ratio test having an asymptotic χ2 distribu-
tion. This approach is very useful when the number
of treatments is large.

It is also possible to change the value of the param-
eter sig.level of the SK function, therefore getting
diferent groupings, and so the researcher can check
what makes sense in practice.

In a few words, the sig.level choice automates the
group formation.

The SK clustering algorithm

Suppose we have a set of independent sample treat-
ment means in the analysis of variance context, each
treatment with the same number of replications, all
normal variates, that is a balanced design. Fur-
thermore, suppose that ANOVA leads to a signifi-
cant F-test for the difference among the treatment
means. Moreover, by rejecting the homogeneity of
the treatment means there is a problem finding out
how many homogeneous groups there are and which
are the treatment means contained in each group.

It should be noted that we follow (Calinski and
Corsten, 1985) in what we mean by homogeneity of
treatments: “Once more it should be borne in mind
that non rejection of equality is by no means equi-
valent to proving equality. We carefully defined ho-
mogeneity as non rejection of equality. Nor it should
be inferred that treatments belonging to different ”ho-
mogeneous groups” are (significantly) different; treat-
ments belonging to the same group, however, are not.”

The SK procedure is a hierarchical clustering algo-
rithm which attempts to find out those groups with-
out overlapping.

Let k be the number of treatments. As it starts,
the SK procedure will either find two distinct groups
dividing the treatment means or will declare those k
treatment means a homogeneous belonging to just one
group. To do so it should look at the 2k−1− 1 possible
partitions of the k means into two nonempty groups,
but it is enough to look at the k− 1 partitions formed
by ordering the treatment means and dividing them
between two successive ones (Scott and Knott, 1974).
Let T1 and T2 be the totals of two of those groups with
k1 and k2 treatments in each one, so that k1 + k2 = k,
that is:

T1 =
k1

∑
i=1

y(i) T2 =
k1+k2

∑
i=k1+1

y(i)

Where y(i), i = 1 : m are the ordered treatment
means and y the grand mean (Ramalho et al., 2000).

Also, let B be the between groups sum of squares.
That is:

B =
T2

1
k1

+
T2

2
k1
− (T1 + T2)2

k1 + k2

Let Bo be the maximum value, taken over the k− 1
partitions of the k treatments into two groups, of the
between groups sum of squares B. After finding out
those groups we use the likelihood ratio test for the
null hypothesis of equality of all means against the
alternative that they belong to the two groups found
above. If we reject this hypothesis then the two groups
are kept, otherwise the group of k treatment means is
considered homogeneous. We then repeat this proce-
dure for each group separated and stop until all the
groups formed up to then are homogeneous.

The statistics used for the likelihood ratio test is:

λ =
π

2(π − 2)
× Bo

σ2
o

where σ2
o is the maximum likelihood estimator of σ2

r .

Let s2 = MSE
r be the unbiased estimator of σ2

r , υ
be degrees of freedom associated with that estimator,
then

σ2
o =

∑k
i=1(y(i)− y)2 + υs2

k + υ

λ is asymptotically a χ2 distributed random vari-
able with υo = k

π−2 degrees of freedom. Therefore we
can use that to set the cutoff point for a given α value
each time we perform the test.

We can think the p-value of likelihood ratio test as
a distance to be measured between the two selected
groups and the chosen type I error (α value) to be the
cut off. If the p-value is smaller than α the groups are
too far away from each other and should be separated
(they are heterogeneous) otherwise, they become just
one group (homogeneous).

“Choosing an appropriate value for α is difficult.
If α is too small, the splitting process will terminate
too soon, while if α is too large, the process will go
too far and split homogeneous sets of means” (Scott
and Knott, 1974).

As we start dividing the first groups into other
smaller groups, we repeat the same algorithm for each
group. We keep doing that until every group formed
in this way is either homogeneous or just contains one
observed mean.

It is important to emphasize the fact that the α
value defined above is not the nominal error rate of
the type I error of the algorithm as a whole. If we set
the α value to be 5% then every test the SK proce-
dure performs to divide or not a sub-group has a type
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I error rate of 5% but we cannot say that the former
type I error rate is 5%. This α value is the parameter
called sig.level in the SK function.

Comparative performance of SK
method

In performance studies among statistical tests is often
very difficult to obtain analytically their rate of type
I error and power. The most usual way to get that in-
formation is through simulation using Monte Carlo
methods. Boardman and Moffit (1971) show that
the difference between analytical values and Monte
Carlo’s is very small therefore making its use an op-
timal way to get the necessary information. Their
results are similar to those found by Bernhardson
(1975).

In spite of the SK being a clustering procedure we
can use simulation results to compare its performance
to Tukey test and others, as if it were a multiple com-
parison procedure.

The two of the most common measures to com-
pare “Multiple Comparison Procedures” found in the
literature are:

� The ratio between the number of type I errors
(reaching the result that µi 6= µj when truly
µi = µj ) and the number of comparisons is de-
fined as comparisonwise error rate.

� The ratio between the number of experiments
with one or more type I errors and the total
number of experiments is defined as experimen-
twise error rate (Carmer and Swanson, 1971;
Steel and Torrie, 1980).

Two simulation studies (Boardman and Moffit,
1971; Bernhardson, 1975) conducted at the Univer-
sidade Federal de Lavras, Brazil, used Monte Carlo
methods to evaluate the performance of the SK
method. One Da Silva et al. (1999) has shown that it
possesses high power and error rate almost always in
accordance with the nominal levels using both com-
parisonwise and experimentwise error rates. That is,
the rates are not far from α value cited above. The
other, Borges and Ferreira (2003) evaluated the power
and the type I error rates of the SK, Tukey and SNK
test, in a wide variety of experimental situations, in
conditions of normality and non-normality error dis-
tribution. They concluded that the SK is more pow-
erful than the other two and is also robust against
violations of normality assumptions. Both performed
2000 simulations for each experiment with 5, 10, 20
and 80 treatments with 4, 10 and 20 replications α
value of 1% and 5% plus coefficients of variation 1%,
10%, 20% and 30%.

The ScottKnott package

The package ScottKnott was written in R language
(R Development Core Team, 2010). It’s results are
objects of the class list, SK and SK.nest, which are
used as input to the generic functions summary and
plot.

The ScottKnott package performs the clustering
algorithm on three designs and three experiments. It
must be emphasized again that the two functions SK

and SK.nest work only on balanced designs.

The designs are: Completely Randomized Design
(CRD), Randomized Complete Block Design (RCBD)
and Latin Squares Design (LSD). The experiments
are: Factorial Experiment (FE), Split-Plot Experi-
ment (SPE) and Split-Split-Plot Experiment (SSPE)
.

The package ScottKnott has two main functions,
SK and SK.nest. The function SK is used for cluster-
ing treatment means of a main factor. The function
SK.nest is used for clustering treatment means of in-
teraction among factors, that is whenever the treat-
ment means belong to a factor nested in others. For
example the treatment means of factor A for level 1 of
factor B and level 1 of factor C. The function SK.nest

supports at most two nesting as shown above.

The function summary generates an output where
the different groups are shown by using letters of
the alphabet. The plot function generates distinct
groups differentiated by colors.

The main algorithm is the function MaxValue

which builds groups of means according to the method
of SK. Basically it is an algorithm for pre-order path
in a binary decision tree. Every node of this tree,
represents a different group of means and, when the
algorithm reaches this node it takes the decision to ei-
ther split the group in two, or form a group of means.
At the end all the leaves of the tree are the groups of
homogeneous means.

The functions SK and SK.nest are methods for ob-
jects of class vector, matrix or data.frame joined as
default, and aov and aovlist for single experiments.

The main parameters used by those methods are:

� x: A design matrix, data.frame or an aov ob-
ject.

� y: A vector of response variable. It is necessary
to inform this parameter only if x represent the
design matrix.

� which: The name of the factor to be used in the
clustering. The name must be inside quoting
marks.

� model: If x is a data.frame object, the model
to be used in the aov must be specified.

� error: The error to be considered. Used only in
case of split-plot or split-split-plot experiments.
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� sig.level: Level of Significance, α value, used in
the SK and SK.nest algorithms to create the
groups of means. The default value is 0.05.

� f l2: A vector of length 1 giving the level of the
second factor in nesting order tested.

� f l3: A vector of length 1 giving the level of the
third factor in nesting order tested.

� id.trim: The number of characters to trim the
label of the factor levels.

� . . . : Further arguments (required by generic).

Split-Split-Plot Experiment (SSPE)

We show an example of how to use the ScottKnott
package. An object of class aovlist will be used in
the function SK.nest.

SSPE is the objet containing the data set of a
Split-Split-Plot Experiment (SSPE). It is a simulated
data to model a SSPE with 3 plots, each one split 3
times, each split, split again 5 times and 4 repetitions
per split-split.

It can be called using the command below:

> data(SSPE)

> nav <- with(SSPE, aov(y ~ blk + ssp *

+ sp * p + Error(blk/p/sp), data = dfm))

The factor ssp is nested in factor sp which is nested
in factor p. The value 1 of the parameter f l2 and 1
of parameter f l3 mean that the first level of factor p
and factor sp, respectively, are chosen. The compari-
son is made only among levels (treatments) of factor
ssp belonging to that particular combination of levels
of factor p and factor sp. Look at the aov(model) and
SK.nest (which) functions for the order at which the
factors appear.

> nsk <- SK.nest(nav, which = "ssp:sp:p",

+ error = "Within", fl2 = 1, fl3 = 1)

> plot(nsk, rl.col = c(rep("black",

+ 3), rep("red", 2)), title = "")

Figure 4: Split-Split-Plot Experiment (SSPE). Nested
analysis (ssp/sp=1/p=1), α = 5%.

Further examples are documented in the folder
demo of the R-package ScottKnott.
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