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The biplot graphic display of matrices with application to 
principal component analysis 

BY K. R. GABRIEL 


The Hebrew University, Jerusalem 


Any matrix of rank two can be displayed as a biplot which consists of a vector for each 
row and a vector for each column, chosen so that any element of the matrix is exactly the 
inner product of the vectors corresponding to its row and to its column. If a matrix is of 
higher rank, one may display it approximately by a biplot of a matrix of rank two which 
approximates the original matrix. The biplot provides a useful tool of data analysis and 
allows the visual appraisal of the structure of large data matrices. It is especially revealing 
in principal component analysis, where the biplot can show inter-unit distances and indicate 
clustering of units as well as display variances and correlations of the variables. 

Any matrix may be represented by a vector for each row and another vector for each 
column, so chosen that the elements of the matrix are the inner products of the vectors 
representing the corresponding rows and columns. This is conceptually helpful in under- 
standing properties of matrices. When the matrix is of rank 2 or 3, or can be closely approxi- 
mated by a matrix of such rank, the vectors may be plotited or modelled and the matrix 
representation inspected physically. This is of obvious practical interest for the analysis 
of large matrices. 

Any n x m matrix Y of rank r can be factorized as 

Y = GH' (1) 

into a n x r matrix G and a m x r matrix H, both necessarily of rank r (Rao, 1965a, 1 b.2.3). 
This factorization is not unique. One way of factorizing Y is to choose the r columns of 
G as an orthonormal basis of the column space of Y, and to compute H as Y'G. 

Factorization (1) may be written as 
y = glh.
ij z (2)j 

for each i and j, where y,j is the element in the ith row and jth column of Y, 2; is the ith 
row of G and h j  is the jth row of H. In this form, the factorization assigns the vectors 
g,, ...,g,, one to each of the n rows of Y and the vectors h,, ...,h,, one to each column of Y. 
Each of these vectors is of order r, and thus (2) gives a representation of Y by means of 
n +m vectors in r-space. The vectors g,, ...,8, may be considered as 'row effects' in that 
g, = kg, means that row i is k times row e, and similarly the hjs may be considered as 
'column effects'. 

For a matrix of rank one, factorization (1) assigns scalar row effects g,, ...,g, and column 
effects h,, . . .,h, and yij is simply the product gihj. Such a matrix is therefore said to have a 



multiplicative structure. Contrast this with the additive structure ydj=Pi+rj assumed for 
matrices of means in two-way analysis of variance. 

In a matrix of rank two, the effects g,, ...,8, and h,, ...,h, are vectors of order two. 
These n +m vectors may be plotted in the plane, giving a representation of the nm elements 
of Y by means of the inner products of the corresponding row effect and column effect 
vectors. Such a plot will be referred to as a bipbt since it allows row effects and column 
effects to be plotted jointly. In  the rest of this section only matrices Y of rank r = 2 will be 
considered. 

The biplot represents a rank two matrix exactly, to the accuracy of plotting. This graphical 
representation is likely to be useful in allowing rapid visual appraisal of the structure of 
the matrix. An inner product of two vectors may be appraised visually by considering it 
as the product of the length of one of the veotors times the length of the other vector's 
projection onto it. This allows one to see easily which rows or columns are proportional 
to what other rows or columns (same directions), whichentries are zero (right angles between 
row and column effects), etc. 

To illustrate the biplot, Pig. 1 shows the graphic display of a 4 x 3 matrix in two different 
factorizations. The matrix with its alternative factorizations is 

Despite the considerable visual disparity of the two biplots it is readily seen that the 12 
inner products of g vectors with h vectors are the same for both. 

The disparity between the two biplots of the same matrix in Fig. 1 illustrates the non- 
uniqueness of factorization (I),which can be replaced by 

Y = (GR') (HR-I)' (3) 

for any nonsingular R. To examine this nonuniqueness, consider the singular value decom- 
position of R', 

R' = V'OW, 

where V and W are 2 x 2 orthonormal matrices and O = diag (dl, 8,) and the transposed 
inverse is R-1 = V'O-lW ( 5 )  

(Good, 1969). Evidently transformations G -t GR' and H -+ HR-I each consist of a rota- 
tion of axes due to V', a stretching and possible reflexion along the resulting axes, and a 
further rotation of axes due to W. Only the stretchings differ, the first transformation using 
factors 8, and 8,, whereas the second uses the reciprocal factors 118, and 118,. In  the example 
of Fig. 1, the matrix is 
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and one obtains 

Thus, to pass from Fig. 1 ( a )  to  Fig. 1 (b) the axes are first rotated through an angle of 
-68.8' = arc sin ( -0.932)' then the g co-ordinates are reflected and stretched by 3.8643 

and 0.2488 respectively, whereas the h co-ordinates are reflected and stretched by 113.8643 
and 110.2488, respectively, and finally the axes are rotated again through an angle of 
54.8" = arcsin (0.817). To see whaO happens, rotate biplot ( a )of Pig. 1 through 

68.8" + 180" -54.8' = 194" 

and note it to differ from biplo6 (b)only by the reciprocal stretching along two axes which 
are now a t  -54.8" from the given axes, of biplot (b )and rotated biplot (a ) .The disparity 
between different factorizations ( 3 )of Y, and thus between the resulting biplots, as illus- 
trated in Fig. 1, is such that relations, apart from collinearity, among the different g vectors, 
as well as among the h vectors, depend almost entirely on the particular factorization chosen. 

To employ the biplot usefully for the inspection of relations between rows of the Y 
matrix and/or between its columns, one therefore has to impose a particular metric and 
make the resulting factorization and biplot unique. For example, if one wishes relations 
between rows of Y to be represented by corresponding relations of g vectors one may impose 
the requirement H'H = I,, ( 6 )  



which yields 
YY' = GG', 

so that, for any two rows yi and yeof Y, 

where (x, y) denotes the angle between vectors x and y, and also 

Note that with this requirement (6), 

Y1(YY')-Y = HH', 

for any conditional inverse (YY')- of YY', and this is the matrix projecting onto the row 
space of Y. The inner products of the h vectors are therefore those of the Y columns taken 
through any metric (YY')-, i.e. q;(YY')-q, = hi h,, (13) 

where q j  and q, indicate the jth and gth columns of Y. 
An alternative factorization is the one which reproduces inner products of Y columns by 

those of h vectors but does not do so for Y rows and g vectors. Here one would impose 

G'G = I, 
instead of (6) and obtain 

Y(Y'Y)-Y' = GG' 

for any conditional inverse (Y'Y)- of Y'Y, as well as the desired 

Y'Y = HH'. 

I n  general, if a metric M is used for rows, that is, one requires 

YMY' = GG', 
one must choose H so as to satisfy 

H'MH = I,, 

and any conditional inverse (YMY1)- can serve as metric for the columns, giving 

Y'(YMY')-Y = HH'. (19) 

To prove (19), introduce (1) and (18) and make use of the fact that 

G'(GG')- G = I, (20) 

because G'(GG')- G is the projection matrix onto the column space of G' which is readily 
seen to be the Euclidean space 9,whose projection matrix is I,. 

Similarly, for any column metric N one must choose G so that 

G'NG = I,. 
Then 

Y'NY = HH' 
as well as 

Y(Y'NY)-Y' = GG' 

for any conditional inverse (Y'NY)-. 
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In  conclusion, the biplot can be made unique, apart from rotations and reflexions, opera- 
tions which do not change the relations between the vectors, by introducing the requirement 
of a particular metric for either row or column comparisons. 

Matrices of ranks higher than two cannot be represented exactly by a biplot. However, 
if a matrix Y can be satisfactorily approximated by a rank two matrix Y(,,, the biplot of 
Y(,) may allow useful approximate visual inspection of Y itself. In  such a case, the inner 
products of the plotted row and column effects will be approximations to the elements of Y. 

To approximate any rectangular n x m matrix Y of rank r by a n x m matrix of lower 
rank, one may use the singular value decomposition (Eckart & Young, 1939; Good, 1969; 
Golub & Reinsch, 1970). This is T 

Y = C A,p,qA, (24)
a = l  

where, for each a = 1, . . .,r, the singular value A,, singular column pa and singular row q; 
are chosen to satisfy 

PLY = LqA, (25) 

Yq, = hapa, (26) 

PAP, = 4 %  = Ja,,, (30) 

G,, ,being Kronecker's delta. Any solution of a pair of equations (25) and (26), (25) and (27) 
or (26) and (28) will satisfy the remaining two equations. 

The method of least squares then provides 

as the rank s approximation to Y (Householder & Young, 1938), i.e. the n x m matrix M 
of rank s which minimizes n rn 

llY-M112 = C C (~ i j -m i j )~ .  

Moreover, the extent of lack of fit is measured by 

Because 

an absolute measure of goodness of fit can be defined as 

= ~ - ~ I Y - Y ( , ) ~ I ~ / / Y ~ I ~= 5 A:/ i:At. (35)
a = l  a = l  

Of particular importance in interpreting this least squares criterion is the fact that it 
is equivalent to the criberion of least squares on the differences between all rows as well as 
between all columns. From Rao (19653) 



that is, if the columns of Y and of M sum to zero. 
It follows that Y(,) is the rank s matrix whose row differences best approximate the row 

differences of the matrix Y, and they do so with goodness of fit pi2). The same applies for 
columns. 

The approximate biplot of Y is then the exact biplot of 

A1 0 q; 
'(2) = [PI, P21 [ O  AJ [qd 

and its goodness of fit is measured by 

pa2)= (A?+A:)/ i: A:.a = l  

If pi2) is near to one, such a biplot will give a good approximation of Y. 
In  choosing, as in ( I ) ,  factors G and H of Y(,, for biplotting, one may use the factorization 

provided by the singular decomposition (38). Writing 

one obtains 

Y(2)= 

One choice of G and H would be in terms of rows 

Other choices of G and H are obtained by defining 

which satisfies requirement (14), or as 

which satisfies requirement (6). 
As an illustration consider the dataY in Table 1 showing percentages of households having 

various facilities and appliances in East Jerusalem Arab areas, by quarters of the town. 
I am obliged to Israel Sauerbrun for bringing this example to my attention. The average 
percentages in each quarter indicate the standard of living of that area and the average 
percentage of each facility or appliance its over-all prevalence. With a multiplicative model, 
such averages are fitted by leasti squares as the first singular component Y(,).To study the 
differential prevalence of different facilities and appliances in the different quarters, this 
first component was subtiracted out, leaving Y -Y(l) in Table 2. Note that 

is the singular decomposition of that residual matrix. 



Table 1.Facilities and equipment in East Jerusalem in 1967, 
by subquarter, from Israel (1968) 

Modern 
& Other 

Porcentage of Old city quarters Amer. W Rural 
households r A x Colony Shaafat A-Tur Silwan Sur-Bahar 
possessing: Christian Armenian Jewish Moslem Sh. Jarah Bet-Hanina Isawiye Abu-Tor Bet-Safafa 

Toilet 
Kitchen 
Bath 
Electricity 
Water* 
Radio? 
TV set 
Refrigeratort 

* In dwelling. t Or transistor radio. 1 Electric. 

Table 2. Residual matrix after subtracting out multiplicative least squares fit (first singular 
component) from Table 1, with next two singular values, rows and columns 

Christian Armenian Jewish Moslem American Shaafat A-Tur Silwan Sur-Bahar 

Toilet 
Kitchen 
Bath 
Electricity 
Water 
Radio 
TV set 
Refrigerator 



The residual matrix Y -Y(,, corresponds to interaction residuals after fitting an additive 
model in two-way analysis of variance. Thus, for example, the large positive values for 
toilets and for radios in Sur-Baher and Bet-Safafa do not indicate a higher prevalence of 
toilets and radios in that rural area than in the Eastern city as a whole; see Table 1. ID 
indicates that, relative to the general paucity of facilities and appliances in that area, toilets 
and radios are not as rare as other items. 

Along with the residual matrix Y -Y(,,, Table 2 also shows its first two singular values 
A, and A,, columns p, and p, and rows qi and qi. The goodness of fit of the second and third 
singular components to the residual matrix Y -Yo, is 

so that the matrix of rank 2 should give a very close approximation to the residuals under 
consideration. The biplot of Fig. 2 has been constructed from these values by means of 
factorization (43). This factorization was considered appropriate since in the resulting 
biplot the relations between appliances would be approximated by the relations between 
the corresponding g vectors; see (6)to (11).Similarly distances between h vectors would 
approximate standardized statistical distances between subquarters; see (12) and (13). 

Inspection of Fig. 2 shows the Old City quarters to be opposite a cluster of the modern 
quarters. The one rural area is roughly orthogonal to both clusters, somewhat nearer to the 
Old City than to the modern quarters, whereas the other quarters are less prominent in a 
similar direction, with the poorer Silwan and Abu-Tor areas closer to the poorest of the 
Old City quarters, and the richer A-Tur and Isawiye slightly in the direction of the modern 
quarters. 

The modern quarters appear to have a particularly high prevalence of baths, water 
inside the dwelling and refrigerators, whereas the poorer quarters have relatively high 
prevalences of toilets and electricity. Evidently the last two items were pretty generally 
available in all urban sections and thus are not indicative of better living conditions, 
whereas the former three items were much more available in better off homes. 

It is interesting to note that electricity is noticeably rarer in the rural area than in all 
urban quarters, whereas radios, presumably battery operated, and kitchens are the items 
which least reflect the low general level of the rural area. 

In  the present example, attention was focused on residuals from a multiplicative fit 
so that the second and third components were biplotted. In  other instances it might be 
more interesting to biplot the first two components and study the data matrix itself. 

A n x m matrix Y of observations of n units on m variables is considered, in which the 
mean of each variable has been subtracted out, i.e. (37) is satisfied. Then 

is the corresponding m-variate estimated variance-covariance matrix. A standardized 
measure of the distance between the 4th and eth units is given by 

a?,,= (Y, -ye)' S-Yy, -ye)
(Seal, 1964, pp. 126-7). 
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Fig. 2. Differential prevalence of facilities and equipment in 
East Jerusalem households (Arab) in 1967. 



Principal component analysis consists of singular decomposition of such a matrix Y 
(Whittle, 1952). Note that (28) becomes 

the usual form of the equations for principal component analysis, except that the factor n 
is often omitted and h2/n computed instead of A:. 

I n  view of (25), the singular rows qk are seen to be weighted sums of the actual n rows. 
Similarly, by (26), the canonical columns p, are weighted sums of the actual m columns. 

The singular decomposition (24) shows that matrix Y can be factorized as 

Y = (PI, ...,Pr) ( A I ~ I ,  ...,hrqr)'. 

This factorization has, in view of (30), the following properties: 

(hlql, ...,hrqr) (hlql, ...,hr qr)' = nS. (51) 

Now consider the rank two approximation Y(2)of (38) and, for the purpose of biplotting, 
choose G = (PI,~ 2 )J n ,  

which, apart from a constant factor, consists of introducing requirement (14). Write - for 
'is approximated by means of a least squares fit of rank two'. Then (47) to (51) yield 

Y - GH', (53) 

YS-1Y' - GG', (54) 

S - HHf, (55) 

(54)and (55) corresponding to (15) and (16). 
Any approximate biplot of Y, or exact biplot of Y(g, allows the following approximations: 

the individual observations 

the i th and eth units' difference on variable j 

Y i j  -Yej " (gi-8,)'hj, 

the i th unit's difference between variables jand g 

Y i j  -Yig &(hj-hg), 

the i th and eth units' interaction with variables jand g 

Y i j  -Yej-Yig+Yeg (gi- 8,)'(hj-hg)' (59) 
All these follow from (53). 

The biplot of Y with particular choice (52) of G and H allows additional approximations. 
From (54), one approximates the standardized distance (45) between the i th and eth units 
by means of 

di,e I I  gi-gel1. (60) 
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Also, from (55), approximations of covariances, variances and correlations of the rn 
variables are given by 

sj,, being the j, gth element of matrix S and rj,g = J ( s ~ , ~ s ~ , ~ ) .s ~ , ~ /  The expression 

gives an approximation to the average squared difference between variables. 
This particular choice of approximate biplot for Y therefore not only allows one to view 

the individual observations and their differences, but further permits one to scan the 
standardized differences between units and to inspect the variances, covariances and correla- 
tions of the variables. This is likely to provide a most useful graphical aid in interpreting 
multivariate matrices of observations, provided, of course, that these can be adequately 
approximated a t  rank two. 

The elements of Y are biplotted with goodness of fit 

as was pointed out in $2. The elements of S,  however, are biplotted, (61) and (62), with 
even better fit 

pP) = (Af +At) /  i:A:, (66)
a=l 


as will be shown. On the other hand, the standardized distances d,,, of (45) are approximated 
only to the extent of 

(67) 

on the biplot, as is shown next. Therefore, whereas the matrix elements themselves and the 
variances, covariances and correlations may often be excellently represented in the biplot, 
the standardized distances are not well represented. I n  fact the biplot distances must be re- 
garded as distances standardized in the plane of best, fit, rather than as approximations to 
standardized distances in the entire r space, which latter cannot be approximated any 
better on a plane. Such a standardized planar distance may indeed be a more attractive 
measure than the wholly standardized distance which gives equal weight to all dimensions; 
see also Rao (1952, $ 9 ~ ) .  

To consider the approximation of distances di,,consider the canonical decomposition 

which is readily checked from (47) and (51). Now, noting (37), use (36) to write 



g's being rows of G of (52a). Also 

so that (67) is established as a measure of goodness of fit. Also, in view of the least squares 
argument in $2, it is clear that no other vectors of order 2 can approximate the y;S-4 
differences better than the gi's do. 

Strictly, the above argument concerns the goodness of fit of the differences (yi -ye)'S-4 
by differences 

rather than that of their lengths di,, by the lengths 11 gi -gell. 
Next, to consider the goodness of fit of the variances and covariances note that the biplot 

of Y with factors (52) gives the same plot of vectors h for variables as the corresponding 
biplot of the variance-covariance matrix S. To see this, note from (47), (24) and (30) that 

and this is readily checked to be the singular decomposition of S.  Since S is symmetric, 
this is also its spectral decomposition (Good, 1969). It follows that 

so that the biplot of S may be reduced to the plot of a single set of vectors h,, ...,h, which 
are the rows of matrix (11 Jn) (hlql, h,q,). But this is exactly the choice of H in (52), proving 
the equivalence of the h's in the biplots of Y and of S. The measure of goodness of fit (39) 
for the plot of S becomes pi4)of (66) because in (71) hi's play the role of the singular values 
whereas in (24) h,'s played that role. 

The plot of vectors h for variables, based on the decomposition of S,  is not novel. Hills 
(1969) points out that for standardized data, i.e. each column standardized to have unit 
variance, the inter-variable squared distance (64) provides the approximation 

The biplot of vectors for units jointly with vectors for variables, and the particular 
choice (52) of factors for principal component analysis are apparently novel. It is interesting 
to note, however, that Bennett (1956) was aware of the possibility of a similar plot. 

An alternative biplot of Y(,, may be obtained by choosing 

which is equivalent to introducing requirement (6), so that properties (7)-(13) hold. This 
may be of interest when the quantities in the different columns of Y are of a similar nature 
and it is preferred to compare rows of Y by giving all their elements the same weight, and 
not weights inverse to the variance-covariance matrix. I n  other words, factorization (74) 
is appropriate if we prefer to approximate the simple distance 

IIyi - Y ~ I I  I I  gi -geII , (75) 



465 Graphic display of matrices 

as in (1 l ) ,  instead of the standardized distance 

as in (39) and (53). This would, however, invalidate approximations (61)-(64) to the variance, 
covariances and correlations, and introduce instead something like (12). 

As noted in $1, different biplots may be obtained with different metrics. Thus, for 
example, N = (l ln)I, and/or M = S-l has given choice (52) corresponding to (14), whereas 
M = I, gives choice (74) corresponding to (6).Another choice commonly used for standard- 
ization is M-1 = diag (s,,,,...,s,,,). 

Table 3. New variables Xi,j determined from Zcj 

To illustrate the principal component biplot, f i s t  type, with choice of factors (52), an 
artificial 4-variate example has been constructed. I am obliged to Mrs Irith Hocherman 
for constructing and analyzing this example. One hundred and twenty independent 
N(0 , l )  variables Zi,j ( i =  1,...,3 0 ; j =  1,...,4) 

were generated and four new variables XiTj were computed; see Table 3. 
The first two components were found to provide a goodness of fit of 

to the 30 x 4 matrix of deviations from the 4-variate means. The biplot is shown in Fig. 3 
withvectors h,, h,, h3and h,labelled as such and the end-points of vectors g,, . . . ,83, indicated 
by the unit indices 1, .  ..,30; the g vectors have not here been plotted as lines. 

Some of the features of the data that can be seen in this biplot are the following. The 
standard deviations of variables X, and X, are much larger than those of variables X, 
and X,; this is evident from the lengths of the h vectors (55), exactly as one would expect 
from the factor 10 added to one third of the observations on those variables. From the 
angles between the h vectors one concludes by (54) that X, is positively correlated with XI 
and X, and negatively with X,.All other correlations are slightly negative, as one would 
expect from the construction of the variables. 

Inspection of the g vectors clearly shows these to fall into three quite distinct clusters, 
corresponding to the three types of units constructed. Units 1-10 are seen by (56) to have 
large positive deviations on XI, no noticeable deviations on X, and X, and somewhat lesser 
negative deviations on X,. Units 11-20 have altogether small deviations, negative on XI 
and X4. Finally, units 21-30 have noticeable negative deviations on XI and quite sizeable 
positive ones on X,. The average distance between units 1-10 and units 21-30 is about the 
same as that of either of these sets and units 11-20. This also agrees with the construction of 
these observations. 

Another use of the biplot is in looking for linear combinations of variables with certain 
characteristics. Thus, the linear combination which maximizes the mean difference between 
units 11-20 versus the rest of the units is roughly X, +X4,whose h vector is simply hl +h,. 
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-1 1 Second component 
(28.3%) 11 -12 

13. 
h l i 

-2 - First component 
(66.0%) 	 I .15 I I I I I I 

-2 -1 0 1 2 3 4 5 

Fig. 3. Artificial 4-variate example of principal component analysis with three types of units 
(h,represents variable X,; number i, givingvector g,, represents unit i).Xi, = 2,+ lo&, 
Xis2= z1+Z2,Xi,$= -(Z1$.Z2+ZS),Xi,4= Z1+...+z4f 108i,21-30. 

Factorization (1)for matrices of rank three can be represented by a bimodel consisting 
of spokes gl,...,g,, hl, ...,h, from a common origin. The interpretation of such a three 
dimensional model is analogous to that of the two dimensional biplot. For matrices of 
rank 3 or more, it would provide a better approximation than the biplot and might be 
worth constructing if A, is large enough relative to the other roots. 

Any program for principal component analysis may be used to obtain the q vectors as 
well as the h roots from (46). The p vectors can then be calculated from (25) and the co- 
ordinates for plotting are available. 

A special program CANDEC which carries out the singular decomposition for various types 
of input matrices is available from the author. This program is written in FORTRAN N 
and has been run with a large variety of data on a CDC 6400 computer. 

For efficient methods of computing the singular decomposition, especially for the smaller 
roots, see Golub & Reinsch (1970). 

The development of the ideas underlying this paper and its formulation owe much to 
the critical insight of Dan Bardu and L.C. A. Corsten with whom this work was discussed in 
detail. I am also obligedto J.Putter and W. J.Hall for their helpful comments on an earlier 
version of this paper. 

This research was supported by a Grant from the U.S. National Center for Health 
Statistics. 
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