<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<style type="text/css" style="display:none;"><!-- P {margin-top:0;margin-bottom:0;} --></style>
</head>
<body dir="ltr">
<div id="divtagdefaultwrapper" style="font-size:12pt;color:#000000;font-family:Calibri,Helvetica,sans-serif;" dir="ltr">
<p>Boa tarde listeiros (@s),</p>
<p><br>
</p>
<p>Estou aplicando a análise fatorial e queria a ajuda para utilizar o pacote 'sem'.</p>
<p>De acordo com o Quick-r (<a href="http://www.statmethods.net/advstats/factor.html" class="OWAAutoLink" id="LPlnk263187" previewremoved="true">http://www.statmethods.net/advstats/factor.html</a>).</p>
<p><br>
</p>
<p>Segundo o script apresentado no site os fatores F1 e F2 são descritos em função das variáveis X1, X2,...e as cargas lam1,lam2,...ect.</p>
<p><br>
</p>
<p>Bem minha dúvida é: essas posições das cargas (lam1,lam2,...) são fixas e como posso colocar na equação do modelo as mais significativas, tipo (lam3, lam7).
<br>
</p>
<p>E como posso retirar a equação usando meus dados. Segue minha rotina.</p>
<p><br>
</p>
<p></p>
<div>af=factanal(dad, factors=8, scores=c('Bartlett'), rotation='varimax')<br>
> af<br>
<br>
Call:<br>
factanal(x = dad, factors = 8, scores = c("Bartlett"), rotation = "varimax")<br>
<br>
Uniquenesses:<br>
ï..s3 s7 s11 s15 s16 ad1 ad2 ad3 ad4 ad5 ad9 ad13 ad14 ad15 ad19
<br>
0.341 0.005 0.484 0.079 0.005 0.103 0.308 0.098 0.005 0.090 0.108 0.015 0.200 0.005 0.436
<br>
<br>
Loadings:<br>
Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 Factor8<br>
ï..s3 0.295 -0.250 0.202 0.140 0.266 0.612 <br>
s7 -0.407 0.865 -0.135 0.163 -0.153 <br>
s11 -0.426 0.541 0.118 <br>
s15 0.930 -0.164 -0.139 <br>
s16 0.247 0.561 -0.103 0.771 <br>
ad1 0.910 -0.178 0.158 <br>
ad2 0.781 -0.229 0.101 -0.101 <br>
ad3 0.875 -0.202 0.134 0.248 <br>
ad4 -0.134 0.538 -0.267 0.777 <br>
ad5 0.887 -0.156 0.295 <br>
ad9 0.128 0.926 <br>
ad13 0.894 0.258 -0.227 0.235 <br>
ad14 0.813 0.183 0.103 0.256 -0.151 <br>
ad15 0.389 -0.155 0.397 0.744 0.305 <br>
ad19 0.622 0.132 -0.123 0.138 0.149 0.312 <br>
<br>
Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 Factor8<br>
SS loadings 3.832 3.365 1.507 0.997 0.772 0.771 0.751 0.722<br>
Proportion Var 0.255 0.224 0.100 0.066 0.051 0.051 0.050 0.048<br>
Cumulative Var 0.255 0.480 0.580 0.647 0.698 0.750 0.800 0.848<br>
<br>
Test of the hypothesis that 8 factors are sufficient.<br>
The chi square statistic is 12.7 on 13 degrees of freedom.<br>
The p-value is 0.471 </div>
<p></p>
<p>Muito obrigado a todos.</p>
<p><br>
</p>
<p>Bruce<br>
</p>
<p><br>
</p>
<div id="LPBorder_GT_14993648455550.8348265393629513" style="margin-bottom: 20px; overflow: auto; width: 100%; text-indent: 0px;">
<table id="LPContainer_14993648455400.15628950072928316" style="width: 90%; background-color: rgb(255, 255, 255); position: relative; overflow: auto; padding-top: 20px; padding-bottom: 20px; margin-top: 20px; border-top: 1px dotted rgb(200, 200, 200); border-bottom: 1px dotted rgb(200, 200, 200);" role="presentation" cellspacing="0">
<tbody>
<tr style="border-spacing: 0px;" valign="top">
<td id="TextCell_14993648455440.10067223655532653" style="vertical-align: top; position: relative; padding: 0px; display: table-cell;" colspan="2">
<div id="LPRemovePreviewContainer_14993648455440.5687890445767007"></div>
<div id="LPTitle_14993648455440.6477137660120408" style="top: 0px; color: rgb(0, 120, 215); font-weight: 400; font-size: 21px; font-family: "wf_segoe-ui_light","Segoe UI Light","Segoe WP Light","Segoe UI","Segoe WP",Tahoma,Arial,sans-serif; line-height: 21px;">
<a id="LPUrlAnchor_14993648455480.9121897651184847" style="text-decoration: none;" href="http://www.statmethods.net/advstats/factor.html" target="_blank">Quick-R: Factor Analysis - Quick-R: Home Page</a></div>
<div id="LPMetadata_14993648455500.14168576972556624" style="margin: 10px 0px 16px; color: rgb(102, 102, 102); font-weight: 400; font-family: "wf_segoe-ui_normal","Segoe UI","Segoe WP",Tahoma,Arial,sans-serif; font-size: 14px; line-height: 14px;">
www.statmethods.net</div>
<div id="LPDescription_14993648455520.09013040946767281" style="display: block; color: rgb(102, 102, 102); font-weight: 400; font-family: "wf_segoe-ui_normal","Segoe UI","Segoe WP",Tahoma,Arial,sans-serif; font-size: 14px; line-height: 20px; max-height: 100px; overflow: hidden;">
Learn principal components and factor analysis in R. Factor analysis includes both exploratory and confirmatory methods.</div>
</td>
</tr>
</tbody>
</table>
</div>
<p></p>
<br>
</div>
</body>
</html>