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Abstract 
We propose a distribution-free test of symmetry. Monte Carlo results show the new test 
usually outperforms the non-normality robust version of the Jarque-Bera test. Empirical 
results indicate that the tail of the distribution is too heavy to apply the latter test, while 
the former is always valid. 
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1  Introduction 
 

It has long been recognized that daily asset returns are leptokurtic. While the high 
kurtosis of the returns is a well-established fact, the situation is more unclear with 
respect to the symmetry of the distribution. The issue of skewness in financial returns is 
important for financial theories. For instance, as for option pricing theories, the widely 
used Black-Scholes option pricing model frequently misprices deep-in-the-money and 
deep-out-the-money options. Corrado and Su (1996, 1997) attribute this fact to the 
skewness and kurtosis of returns distribution. They show that when skewness and 
kurtosis-adjustment terms are added to the Black-Scholes formula, improved accuracy 
is obtained for pricing options. 
 
    The test proposed by Jarque and Bera (1981) is widely used to test for normality. 
The Jarque-Bera (JB) test checks whether the skewness and kurtosis of a sample accord 
with those of normal distribution, respectively. Since the JB test for skewness is only 
valid under the assumption of normal distribution, the test is inappropriate for a 
symmetric but non-normal distribution. The JB test may lead the rejection of true 
assumption of symmetry simply as a result of non-normality. For this reason, results of 
JB test for skewness are unreliable for heavy-tailed distributions which are observed for 
asset returns. 
 
    Some authors propose non-normality robust test for skewness. While Gofrey and 
Orme (1991) extend the JB test by adjusting the variance of sample third moment, 
Ahmad and Li (1997) and Hyndman and Yao (2002) develop nonparametric tests for 
symmetry, based on kernel estimation techniques. 
 
    The purpose of this article is to propose a distribution-free test for symmetry, based 
on the two-sample Kolmogorov-Smirnov test. We use Gofrey and Orme (1991) (GO) 
test as a benchmark. Section 2 explains the new and GO test statistics. Section 3 
investigates their finite sample properties by Monte Carlo simulations. Section 4 
presents the empirical results of S&P 500 returns. 
 
    It should be noted that the method of the current paper is different from 
distributional approach such as Harris and Kucukozmen (2001). They assumed the 
exponential generalized beta and the skewed generalized t distributions in order to 
describe asymmetry. 



 
2 A Distribution-Free Test 
 

In this section, we propose a distribution-free test for skewness based on the 
two-sample Kolmogorov-Smirnov test. In our test, the sample is divided into two 
groups, and examined whether the two groups are from the same distribution. The 
proposed test requires no distribution assumption except for the existence of the first 
moment. 
 

Testing Procedure for the proposed test is as follows; 
1. Given a sample, , divide it into two groups; One is the group which takes 

larger value than mean, 

1, , Ty … y

1
ty T y−= ∑ , while the other is the sample which takes 

smaller value than mean. 
2. Transform  into ty ty y−  for the former group and into ty y−  for the latter, so 

that the transformed data takes values larger than zero. 
3. Test the null hypothesis that the two datasets come form the same distribution, by 

using the two-sample Kolmogorov-Smirnov test. 
 

If  comes from a symmetric distribution, then the two transformed 
datasets follow the same distribution. If the sample comes from an asymmetric 
distribution, then the empirical distribution of two groups may differ significantly. For 
example, we consider a uni-modal distribution. As for a symmetric distribution, the 
density function of the transformed datasets is monotonously decreasing function. This 
is not the case for an asymmetric distribution. Since the mode for the asymmetric 
distribution is different from the mean, one of the two groups has a mode for the density 
function. The two-sample Kolmogorov-Smirnov test can detect such a difference 
powerfully. It should be stressed that the proposed test can be applied to any 
multi-modal and/or non-modal distribution if its first moment exists. 

1, , Ty … y

 
    It is also possible to use such test as the Wilcoxon rank-sum test instead of the 
Kolmogorov-Smirnov test. While the Kolmogorov-Smirnov test is sensitive to any 
difference in the distribution of the two samples, the Wilcoxon rank-sum test is 
especially appropriate to detect differences in location. For this reason we employed the 
Kolmogorov-Smirnov test. 
 



Computation of the two sample Kolmogorov-Smirnov test is as follows; Let A and 
B be two (independent) samples. Given an ordinal variable which ranks subjects from 1 
to k, for each sample separately compute the cumulative percentage of subjects by rank, 
such that the cumulative percentage of the k-th rank will be 100% for each sample. For 
each rank, the cumulative percentage in sample B is subtracted from the cumulative 
percentage in sample A. Let D equal the largest difference in cumulative percentages for 
any given ordinal rank. Although it is possible to obtain critical values  for 
Kolmogorov-Smirnov D, we employ the large-sample approximation based on 

* 2
1 2 1 24 ( ) ( )KS D n n n n= +  where  and  are sample sizes for A and B, 

respectively. Under the null hypothesis that the two samples come from the same 
distribution, 

1n 2n

KS ∗  follows  approximately; See textbooks such as Stuart and 
Ord (1991). 
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    In the next section we consider a regression model 2, ~ (0,i i i iy x u u iid )β σ= + , 

and apply the proposed test for OLS residuals, , in order to investigate finite sample 
properties. 

ˆiu

 
As a bench mark, we consider the test of Godfrey and Orme (1991) (GO), which is 

the non-normality robust test for symmetry. We briefly introduce their test statistic. As 
shown below, the test requires the existence of moments up to order six. Let 

, then  is asymptotically normally distributed with zero mean 

under the null of symmetry, i.e., 

1
3ˆ ˆim n u−= ∑ 3 1/ 2

3ˆn m

3( ) 0iE u = . Godfrey and Orme (1991) show that the 

variance of  is estimated by 1/ 2
3ˆn m ( )1 6 6 2 1 4ˆ ˆ ˆ ˆ9 6i iv n u n uσ σ−= + − ˆ−∑ ∑ , where 2σ̂  is 

the residual variance, . Under the null hypothesis, 1 ˆin u− ∑ 2 ( )1 3ˆiT n u v−= ∑ ˆ  follows 

the  distribution. 2 (1)χ
 

It is important to note that the estimator of variance of  assumes symmetry 

but not normality. If the disturbances, , are normally distributed, then  

1/ 2
3ˆn m

iu 1 4ˆin u− ∑



tends to 43σ  and  tends to 1 ˆin u− ∑ 6 615σ  and  reduces to v̂ 6ˆ ˆ6v σ= . This is the 

case of JB test.  
 
 
3 Monte Carlo Results 
 

In this section, we investigate the finite sample properties of the new 
nonparametric test. While we use the GO test as a benchmark, we also report the results 
of JB test to warn the misuse of the JB test. 
 
    We consider a regression model i iy x uiβ= +  ( 1, ,i n= … ), where (0,1)β ′=  and 

1 2( , )i i ix x x= . We set  and , and consider six kinds of disturbances, 

; (i) , (ii) , (iii) 

1 1ix = 2 ~ (0,1)ix U

iu ~ (0,1)iu N ~ (3)iu t 2~ (1)iu χ 1− , (iv) , (v) 

, (vi) 

2~ (2)iu χ − 2

2~ (50) 50iu χ − ~ (2,1) 2iu Gamma − . The first two distributions are symmetric 

distributions, while the others are asymmetric. The fifth specification can be considered 
as an extreme case. When the degree of freedom of chi-squared distribution is large, the 
distribution can be approximated by normal distribution. The third specification is the 
case of non-modal distribution. We specified as 100n =  and conducted 5000 
replications. The nominal size of the test is five percent, and thus critical value of the JB 
and GO tests are 3.84, while that of the new test is 5.99. 
 
   Table 1 reports the rejection frequencies of the JB, GO and the new tests. First, we 
examine the size of the tests. The rejection frequency of the JB test for t(3) indicates 
that the JB test reject the null of symmetry simply because the distribution is 
non-normal. For the sample size of 100, the GO test tends to under-reject the null when 
the null hypothesis is true, i.e., the cases of N(0,1) and t(3). It should be stressed that the 
assumption of the GO test is unsatisfied for t(3). The rejection frequencies of the new 
test are close to nominal size. Secondly, we investigate the power of the tests. We 
neglect the JB test for the reason stated above. The GO and new tests seem to have good 
power except for the case (v), i.e., . In the case (v), the rejection frequency of 
the GO is low, and that of the new test is close to 0.05. This result implies that, in the 
case that the distribution is well approximated by normal distribution, the new test may 
lose power, while the GO test has higher power than the proposed one as it uses 

2 (50)χ



information about moments. Except for the case (v), the new test has higher powers 
than those of the GO test. Summing up the above results, the new test has good size and 
power to detect the asymmetry of distributions. 
 
 
4 Empirical Results 
 

In this section, we test for symmetry of returns of Standard and Poor's 500 
Composite Index (S&P). The sample period for S&P is 1/6/1986 to 12/4/2000, giving 

3604 observations. The returns, tR , are defined as { }1100 log logt tP P−× −  minus the 

sample mean, where  is the closing price on day . Table 2 shows the results of JB, 
GO and the distribution-free tests for raw data, 

tP t

tR , showing no evidence for 
asymmetric distribution. As noted before, JB test rejects the null simply because the 
distribution is non-normal. 
 
   We consider the asymmetric stochastic volatility (SV) model with standardized 
t-distribution as follows; 
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By the specification, tξ  follows the standardized t-distribution with degree of freedom 
ν , and the correlation coefficient between tε  and tη  is ρ . When ν →∞ , the model 
reduces to the asymmetric SV model considered by Harvey and Shephard (1996). We 
estimated the model by the approach proposed by Asai (2005), which is based on the 
Monte Carlo likelihood method of Durbin and Koopman (1997). The estimate and 
standard error of ρ  are －0.5315 and 0.0683, respectively, while those of ν  are 
6.4031 and 0.7023. The results show the leptokurtic distribution for returns and negative 
correlation between innovation terms. We applied the tests for asymmetry to the 

standardize residual, 1ˆˆt t tz Rσ −= , where 2ˆtσ  is the estimates of . Table 2 

indicates that the null hypothesis of symmetry is rejected by the GO test, while it is not 
rejected by the new test. The contradicted results may be caused by heavy-tailed 

2 exp( )thσ



distribution. Since the estimate of ν  is close to six, there is a possibility that the true 
ν  is smaller than six. If it is true, the GO test is invalid as the moment condition is not 
satisfied. 
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Table 1: Rejection Frequencies of Tests for Symmetry 
 

Tests N(0,1) t(3) 2 (1)χ 2 (2)χ 2 (50)χ Gamma(2,1) 
JB 0.0468 0.6164 1.0000 1.0000 0.3182 1.0000 
GO 0.0408 0.0222 0.6592 0.7628 0.2340 0.7642 

New Test 0.0467 0.0514 0.9884 0.9074 0.0514 0.9052 
Note: Nominal size is five percent. 

 

 
 
 
 

Table 2: Tests for Asymmetry of Returns of S&P 
 JB GO New Test 

Raw Data 6289.5 [0.0000] 1.2670 [0.2603] 4.6639 [0.0971] 
Std. Res. 199.77 [0.0000] 6.8335 [0.0089] 3.9067 [0.1418] 

Note: P-values are in square brackets. Standardized Residuals are 
calculated based on the asymmetric SV-t model. 


