<div dir="ltr">Caro Colegas da r-br e Walmes,<div><br></div><div>Bom dia a todos.<br><div><br></div><div>Eu posso incluir em um modelo uma variável independete no efeito aleatório e no efeito fixo assim como esta o modelo abaixo?</div>
<div><br></div><div>Obrigado.</div><div><br></div><div><span class="" style="border-collapse:separate;color:rgb(0,0,0);font-family:'Ubuntu Mono';font-size:14px;line-height:16px;white-space:pre-wrap;border-spacing:0px;background-color:rgb(225,226,229)"><pre tabindex="0" class="" style="font-family:'Ubuntu Mono';outline:none;border:none;word-break:break-all;margin-top:0px;margin-bottom:0px;line-height:1.2;font-size:10.4pt!important;white-space:pre-wrap!important">
<span class="" style="white-space:pre;color:blue">> </span><span class="" style="color:blue">dput(estirpe_r_br)
</span>structure(list(Tratamento = structure(c(4L, 4L, 4L, 4L, 5L, 5L, 
5L, 5L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 3L, 3L, 3L, 3L, 1L, 1L, 
1L, 1L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 6L, 6L, 
6L, 6L, 7L, 7L, 7L, 7L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 2L, 2L, 
2L, 2L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 7L, 7L, 
7L, 7L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 4L, 4L, 
4L, 4L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 3L, 3L, 
3L, 3L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 5L, 5L, 
5L, 5L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 3L, 3L, 3L, 3L, 1L, 1L, 
1L, 1L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 6L, 6L, 
6L, 6L, 7L, 7L, 7L, 7L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 2L, 2L, 
2L, 2L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 7L, 7L, 
7L, 7L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 4L, 4L, 
4L, 4L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 3L, 3L, 
3L, 3L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 5L, 5L, 
5L, 5L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 3L, 3L, 3L, 3L, 1L, 1L, 
1L, 1L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 6L, 6L, 
6L, 6L, 7L, 7L, 7L, 7L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 2L, 2L, 
2L, 2L), .Label = c("T_CN", "T_SN", "CIAT 899", "UFLA 02-100", 
"UFLA 02-127", "UFLA 02-68", "UFLA 04-195"), class = "factor"), 
    Bloco = structure(c(1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 
    3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 
    2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 
    1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 
    4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 
    3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 
    2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 
    1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 
    4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 
    3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 
    2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 
    1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 
    4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 
    3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 
    2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 
    1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 
    4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 
    3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 
    2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L
    ), .Label = c("1", "2", "3", "4"), class = "factor"), Local = structure(c(3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 7L, 7L, 7L, 
    7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
    7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 10L, 10L, 10L, 10L, 10L, 
    10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 
    10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 8L, 8L, 8L, 8L, 8L, 
    8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 
    8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 
    9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 
    9L, 9L, 9L, 9L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
    6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
    6L, 6L), .Label = c("Lavras", "Lavras 2", "Patos de Minas", 
    "Patos de Minas 2", "PO", "PO 2", "Bambui", "GM", "Luminarias", 
    "Pitangui"), class = "factor"), MSPA = c(22.96, 20.75, 28.56, 
    22.95, 24.91, 15.2, 12, 20.65, 18.39, 16.18, 14.45, 17.14, 
    13.02, 26.95, 8.45, 11.47, 23.62, 10.62, 10.35, 19.78, 34.52, 
    34.16, 35.99, 47.89, 15.32, 12.61, 10.45, 10.45, 24.93, 33.3, 
    52.25, 19.67, 53.04, 48.77, 34.64, 57.85, 52.43, 36.78, 37.15, 
    24.28, 23.48, 32.41, 42.63, 32.35, 40.17, 25.84, 31.77, 46.27, 
    53.27, 29.05, 54.03, 43.19, 28.18, 49.61, 47.09, 42.65, 72.1, 
    78.8, 58.2, 63.9, 62.5, 90.8, 61.6, 35, 61.4, 98, 64, 68.6, 
    73.3, 99.3, 72.3, 47.3, 74.4, 45.8, 79.7, 66.6, 140.2, 105.2, 
    111.8, 127.8, 79.1, 100.8, 91.6, 69.1, 67.8, 76.6, 82.7, 
    76.4, 81.2, 75.1, 82.3, 73.5, 81, 79.4, 112.1, 73.3, 56.6, 
    91.8, 86.2, 79.4, 65.2, 85.8, 75.5, 66, 136.2, 152.5, 126.3, 
    129.8, 68.4, 71.3, 95.5, 64.9, 66.64, 43.91, 72.9, 53.02, 
    46.5, 50.22, 65.15, 35.87, 49.14, 49.84, 92.12, 34.62, 81.94, 
    51.85, 72.23, 72.92, 67.5, 46.71, 48.24, 58.98, 66.78, 56.53, 
    59.89, 38.13, 54.03, 52.78, 51.5, 62.31, 20.06, 26.91, 11.52, 
    51.73, 24.31, 12.99, 17.35, 26.46, 8.59, 14.13, 25.43, 26.04, 
    15.53, 16.8, 19.27, 27.85, 12.36, 19.09, 11.05, 41.24, 12.03, 
    20.47, 17.5, 26.95, 13.49, 16.04, 16.72, 14.69, 42.73, 42.28, 
    87.11, 54.69, 61.6, 90.5, 38.43, 101.82, 48.37, 72.41, 53.5, 
    60.12, 41.68, 44.1, 46.95, 43.33, 47.92, 36.53, 33.5, 42.78, 
    62.4, 75.84, 51.5, 62.83, 44.6, 42.08, 44.29, 44.25, 29.81, 
    18.11, 21.24, 40.49, 22.49, 26.99, 33.88, 25.28, 22.88, 21.6, 
    26.87, 19.58, 21.38, 22.74, 18.34, 33.79, 29.69, 25.85, 19.9, 
    40.38, 18.96, 29.66, 27.93, 14.67, 20.34, 31.48, 22.15, 28.91, 
    80.38, 98.7, 96.36, 115.54, 56.14, 127.9, 76.04, 65.84, 40.4, 
    54.64, 36.2, 31.96, 30.76, 72.56, 51.02, 23, 69.26, 75, 51.82, 
    74.38, 57, 106.94, 80.16, 35.02, 37.36, 38.92, 49.76, 23.4, 
    29.56, 36.61, 56.75, 51.24, 42.03, 23.76, 46.05, 34.88, 46.99, 
    37.68, 30.95, 37.45, 37.92, 46.35, 46.75, 37.85, 27.32, 30.34, 
    56.91, 47.88, 29.41, 33.5, 33.94, 36, 40.16, 33.35, 35.55, 
    35.3), Irrigacao = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L), .Label = c("Sem", "Com"), class = "factor"), 
    NT = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L
    ), .Label = c("2", "3", "4"), class = "factor"), Safra = structure(c(1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("Seca", "Aguas", 
    "Inverno"), class = "factor"), Prep_Solo = structure(c(1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("CO", "PD"
    ), class = "factor")), .Names = c("Tratamento", "Bloco", 
"Local", "MSPA", "Irrigacao", "NT", "Safra", "Prep_Solo"), row.names = c(NA, 
-280L), class = "data.frame")</pre></span></div><div><br></div><div><span class="" style="border-collapse:separate;color:rgb(0,0,0);font-family:'Ubuntu Mono';font-size:14px;line-height:16px;white-space:pre-wrap;border-spacing:0px;background-color:rgb(225,226,229)"><pre tabindex="0" class="" style="font-family:'Ubuntu Mono';outline:none;border:none;word-break:break-all;margin-top:0px;margin-bottom:0px;line-height:1.2;font-size:10.4pt!important;white-space:pre-wrap!important">
<span class="" style="white-space:pre;color:blue">> </span><span class="" style="color:blue">lmer1 <- lmer(MSPA ~ Tratamento + (1 + Tratamento | Local ), data = estirpe_r_br,
</span><span class="" style="white-space:pre;color:blue">+ </span><span class="" style="color:blue">              control=lmerControl(optCtrl=list(maxfun=50000)))
</span><span class="" style="white-space:pre;color:blue">> </span><span class="" style="color:blue">
</span><span class="" style="white-space:pre;color:blue">> </span><span class="" style="color:blue">summary(lmer1)
</span>Linear mixed model fit by REML ['lmerMod']
Formula: MSPA ~ Tratamento + (1 + Tratamento | Local)
   Data: estirpe_r_br
Control: lmerControl(optCtrl = list(maxfun = 50000))

REML criterion at convergence: 2253.7

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.8159 -0.4992 -0.1138  0.4992  3.8454 

Random effects:
 Groups   Name                  Variance Std.Dev. Corr                               
 Local    (Intercept)           1535.5   39.19                                       
          TratamentoT_SN         390.8   19.77    -0.90                              
          TratamentoCIAT 899     573.7   23.95    -0.92  0.89                        
          TratamentoUFLA 02-100  716.9   26.77    -0.80  0.71  0.95                  
          TratamentoUFLA 02-127  635.4   25.21    -0.83  0.75  0.92  0.95            
          TratamentoUFLA 02-68   370.3   19.24    -0.91  0.98  0.92  0.77  0.84      
          TratamentoUFLA 04-195  496.5   22.28    -0.88  0.98  0.94  0.79  0.79  0.97
 Residual                        150.7   12.28                                       
Number of obs: 280, groups:  Local, 10

Fixed effects:
                      Estimate Std. Error t value
(Intercept)             60.399     12.543   4.815
TratamentoT_SN         -17.636      6.828  -2.583
TratamentoCIAT 899     -15.847      8.056  -1.967
TratamentoUFLA 02-100   -9.145      8.901  -1.027
TratamentoUFLA 02-127  -10.860      8.430  -1.288
TratamentoUFLA 02-68   -15.496      6.676  -2.321
TratamentoUFLA 04-195  -16.052      7.562  -2.123

Correlation of Fixed Effects:
            (Intr) TrT_SN TCIAT8 TUFLA02-10 TUFLA02-12 TUFLA02-6
TratmntT_SN -0.857                                              
TrtmCIAT899 -0.888  0.837                                       
TUFLA02-100 -0.784  0.679  0.900                                
TUFLA02-127 -0.812  0.716  0.878  0.909                         
TrUFLA02-68 -0.868  0.903  0.854  0.729      0.792              
TUFLA04-195 -0.851  0.913  0.884  0.755      0.759      0.898 </pre></span><div><br></div>-- <br><div dir="ltr">Alisson Lucrecio da Costa</div>
</div></div></div>