Muito obrigado Walmes! Mais uma vez foi muito esclarecedor sua resposta. Penso que é mais sensato manter a analis com o default da função glht mesmo.<br>grato.<br><div class="gmail_extra"><br><br><div class="gmail_quote">Em 3 de dezembro de 2012 22:14, Walmes Zeviani <span dir="ltr"><<a href="mailto:walmeszeviani@gmail.com" target="_blank">walmeszeviani@gmail.com</a>></span> escreveu:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><font face="trebuchet ms,sans-serif">Isso que aconteceu com você acontece com frequência. Veja, sua interação foi significativa à 4%<br>
<br><span style="font-family:courier new,monospace">                Sum Sq Df  F value  Pr(>F)    <br>
(Intercept) <a href="tel:1254528000%C2%A0%201" value="+12545280001" target="_blank">1254528000  1</a> 301.3933 < 2e-16 ***<br>Gest          39011053  3   3.1241 0.04044 *  <br>Manej         28043758  1   6.7374 0.01448 *  <br>
Gest:Manej    39571188  3   3.1689 <b>0.03859 *</b>  <br>Residuals    <a href="tel:124872833%2030" value="+12487283330" target="_blank">124872833 30</a></span><br>
<br>Bem, agora você vai fazer comparações duas à duas. O seu número de hipóteses avaliadas é grande pois você fará k(k-1)/2 contrastes, onde k é o número de níveis. Quando eleva-se o número de hipóteses eleva-se também a chance de erro tipo I. Se cada hipótese tem 95% de confiança (ou 5% de significância), ao testar 10 hipóteses *independentes*, a chance de *pelo menos uma* ser significativa por mero acaso é 1-0.95^10=0.40, ou seja, bem distante do 5%. Ou seja, o nível de significância global fica longe do nominal. Para contornar isso faça a engenharia inversa, quanto deve ser nível individual para o global ser 5%?<br>

<br>Diversos tipos de testes de comparação multipla existem justamente para fazer essa engenharia inversa (Tukey, SNK, t protegido por Bonferroni, etc). Cada um deles procura resolver o mesmo problema: a manutenção do nível global de significância para comparações múltiplas. A glht() faz correção nos p-valores dos testes t. Vários métodos estão disponíveis e o padrão é o single-step. Mudar o método muda o apelo e consequentemente o rigor, uns serão mais liberais (tenderão a dar mais diferenças) que outros. Quando você pega p-valores do F perto do 5%, como no seu caso, se o número de comparações for grande (6 no seu caso), existe chance de não haver diferenças. Por exemplo, para ser significativo pelo critério de Bonferroni, o nível individual de cada teste t teria que ser inferior à 5%/6=0.833, ou seja, uma hipótese individual tem que ser significativa à 1% para representar 5% no global.<br>

<br>É natural você pagar esse preço, afinal, você tá testando várias hipóteses. Sou dono de uma barraca de tiro ao alvo numa feira. O prêmio é R$ 10 se acertar o alvo com 3 tentativas. Se você diz "quanto eu ganho se eu acertar com 10 tentativas?", lógico que não vou te pagar R$ 10. Pagaria bem menos, você terá muito mais chances. Tenho que manter a esperança matemática no mesmo lugar.<br>

<br>Você pode trocar a opção de correção de p-valor para que veja diferenças mas não é recomendado fazer. Os testes de hipótese bem como as hipóteses devem ser definidos antes do experimento/análise dos dados e não decididos durante análise para favorecer certos resultados. Em caráter exploratório, você pode fazer o teste à 10% para recomendar estratégias/selecionar níveis para realizar um experimento futuro.<br>

<br><span style="font-family:courier new,monospace">X1 <- popMatrix(C, effect="Gest", at=list(Manej="1"))<br>X2 <- popMatrix(C, effect="Gest", at=list(Manej="2"))<br>cb <- combn(nrow(X), 2)<br>

Xc1 <- X1[cb[1,],]-X1[cb[2,],]<br>Xc2 <- X2[cb[1,],]-X2[cb[2,],]<br>summary(glht(C, linfct=Xc1))<br>summary(glht(C, linfct=Xc2))<br>summary(glht(C, linfct=Xc1), test=adjusted(<b>type="none"</b>))<br>summary(glht(C, linfct=Xc2), test=adjusted(<b>type="none"</b>))<br>

                     <br>> summary(glht(C, linfct=Xc1))<br>Linear Hypotheses:<br>       Estimate Std. Error t value Pr(>|t|)  <br>1 == 0     -180       1290  -0.139   0.9990  <br>2 == 0    -1760       1290  -1.364   0.5307  <br>

3 == 0    -3710       1369  -2.711   0.0508 .<br>4 == 0    -1580       1290  -1.224   0.6163  <br>5 == 0    -3530       1369  -2.579   0.0680 .<br>6 == 0    -1950       1369  -1.425   0.4940  <br>(Adjusted p values reported -- <b>single-step method</b>)<br>

<br>> summary(glht(C, linfct=Xc1), test=adjusted(type="none"))<br>Linear Hypotheses:<br>       Estimate Std. Error t value Pr(>|t|)  <br>1 == 0     -180       1290  -0.139    0.890  <br>2 == 0    -1760       1290  -1.364    0.183  <br>

3 == 0    -3710       1369  -2.711    0.011 *<br>4 == 0    -1580       1290  -1.224    0.230  <br>5 == 0    -3530       1369  -2.579    0.015 *<br>6 == 0    -1950       1369  -1.425    0.165  <br>(Adjusted p values reported -- <b>none method</b>)<br>

<br></span>À disposição.<span class="HOEnZb"><font color="#888888"><br>Walmes.<br><br clear="all"></font></span></font><div class="HOEnZb"><div class="h5"><span style="font-family:trebuchet ms,sans-serif">==========================================================================</span><br style="font-family:trebuchet ms,sans-serif">

<span style="font-family:trebuchet ms,sans-serif">Walmes Marques Zeviani</span><br style="font-family:trebuchet ms,sans-serif"><span style="font-family:trebuchet ms,sans-serif">LEG (Laboratório de Estatística e Geoinformação, 25.450418 S, 49.231759 W)</span><br style="font-family:trebuchet ms,sans-serif">

<span style="font-family:trebuchet ms,sans-serif">Departamento de Estatística - Universidade Federal do Paraná</span><br style="font-family:trebuchet ms,sans-serif"><span style="font-family:trebuchet ms,sans-serif">fone: <a href="tel:%28%2B55%29%2041%203361%203573" value="+554133613573" target="_blank">(+55) 41 3361 3573</a></span><br style="font-family:trebuchet ms,sans-serif">

<span style="font-family:trebuchet ms,sans-serif">VoIP: (3361 3600) 1053 1173</span><br style="font-family:trebuchet ms,sans-serif"><span style="font-family:trebuchet ms,sans-serif">e-mail: <a href="mailto:walmes@ufpr.br" target="_blank">walmes@ufpr.br</a><br>

skype: walmeszeviani<br style="font-family:trebuchet ms,sans-serif"></span><span style="font-family:trebuchet ms,sans-serif">twitter: @walmeszeviani</span><br style="font-family:trebuchet ms,sans-serif"><span style="font-family:trebuchet ms,sans-serif">homepage: <a href="http://www.leg.ufpr.br/%7Ewalmes" target="_blank">http://www.leg.ufpr.br/~walmes</a></span><br style="font-family:trebuchet ms,sans-serif">

<span style="font-family:trebuchet ms,sans-serif">linux user number: 531218</span><br style="font-family:trebuchet ms,sans-serif"><span style="font-family:trebuchet ms,sans-serif">==========================================================================</span><br>

</div></div><br>_______________________________________________<br>
R-br mailing list<br>
<a href="mailto:R-br@listas.c3sl.ufpr.br">R-br@listas.c3sl.ufpr.br</a><br>
<a href="https://listas.inf.ufpr.br/cgi-bin/mailman/listinfo/r-br" target="_blank">https://listas.inf.ufpr.br/cgi-bin/mailman/listinfo/r-br</a><br>
Leia o guia de postagem (<a href="http://www.leg.ufpr.br/r-br-guia" target="_blank">http://www.leg.ufpr.br/r-br-guia</a>) e forneça código mínimo reproduzível.<br></blockquote></div><br></div>