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1 Introduction

A package parallel is being developed for release in R 2.14.0. It builds on the work done for
CRAN packages multicore (Urbanek, 2009–present) and snow (Tierney et al., 2003–present).

Until October 2011 anything in this package is strictly experimental and may be changed or
removed without notice.

Parallelism can be done in computation at many different levels: this package is principally con-
cerned with ‘coarse-grained parallelization’. At the lowest level, modern CPUs can do several
basic operations in parallel (e.g. integer and floating-point arithmetic), and several imple-
mentations of external BLAS libraries use multiple threads to do parts of basic vector/matrix
operations in parallel.

This package is about running much larger chunks of computations in parallel. A typical
example is to evaluate the same R function on many different sets of data: often simulated data
as in bootstrap computations (or with ‘data’ being the random-number stream). The crucial
point is that these chunks of computation are unrelated and do not need to communicate in any
way. It is often important that the chunks take approximately the same length of time. The
basic computational model is

(a) Start up M ‘worker’ processes, and do any initialization needed on the workers.

(b) Send any data required to the workers.

(c) Split the task into M roughly equally-sized chunks, and send the chunks (including the R
code needed) to the workers.

(d) Wait for all the workers to complete their tasks, and ask them for their results.

(e) Repeat steps (b–d) for any further tasks.

(f) Shut down the worker processes.

Amongst the initializations which may be needed are to load packages and initialize the random-
number stream.

There are implementations of this model in the functions parLapply and mclapply as near-
drop-in replacements for lapply.

A slightly different model is to split the task into M1 > M chunks, send the first M chunks to
the workers, then repeatedly wait for any worker to complete and send it the next remaining
task: this is done in mclapply(mc.preschedule = FALSE) and clusterApplyLB.

In principle the workers could be implemented by threads or lightweight processes, but in the
current implementation they are full processes. They can be created in one of three ways:
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1. Via forking. Fork is a concept1 from POSIX operating systems, and should be available
on all R platforms except Windows. This creates a new R process by taking a complete
copy of the master process, including the workspace and state of the random-number
stream. However, the copy will usually share pages with the master until modified so
forking is very fast.

The use of forking was pioneered by package multicore.

Note that as it does share the complete process, it also shares any GUI elements, for
example an R console and on-screen devices. This can cause havoc.

There needs to be a way to communicate between master and worker. Once again there are
several possibilities since master and workers share memory. In multicore the initial fork
sends an R expression to be evaluated to the worker, and the master process opens a pipe
for reading that is used by the worker to return the results. Both that and communication
via sockets is supported in package parallel.

2. Via system("Rscript") or similar to launch a new process on the current machine or a
similar machine with an identical R installation. This then needs a way to communicate
between master and worker processes, which is usually done via sockets.

This should be available on all R platforms, although it is conceivable that zealous security
measures could block the inter-process communication via sockets.

3. Using OS-level facilities to set up a means to send tasks to other members of a group of
machines. There are several ways to do that, and for example package snow can make use
of PVM (‘parallel virtual machine’) and MPI (‘message passing interface’) using R pack-
ages rpvm and Rmpi respectively. Communication overheads can dominate computation
times in this approach, so it is most often used on tightly-coupled clusters of computers
with high-speed interconnects.

Other CRAN packages following this approach are GridR (using Condor or Globus) and
Rsge (using SGE, currently called ‘Oracle Grid Engine’).

It will not be considered further in this vignette.

The landscape of parallel computing has changed with the advent of shared-memory computers
with multiple (and often many) CPU cores. Until the late 2000’s parallel computing was mainly
done on clusters of large numbers of single- or dual-CPU computers: nowadays even laptops
have two or four cores, and servers with 8, 12 or more are commonplace. It is such hardware
that package parallel is designed to exploit.

2 Numbers of CPUs

In setting up parallel computations it can be helpful to have some idea of the number of CPUs
available, but this is a rather slippery concept.

Note that all a program can possibly determine is the total number of CPUs available. This
is not necessarily the same as the number of CPUs available to the current user which may
well be restricted by system policies on multi-user systems. Nor does it give much idea of
a reasonable number of CPUs to use for the current task: the user may be running many R
processes simultaneously, and those processes may themselves by using multiple threads through
multi-threaded BLAS, compiled code using OpenMP or other low-level forms of parallelism. We

1http://en.wikipedia.org/wiki/Fork_(operating_system)
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have even seen instances of multicore’s mclapply being called recursively, generating 2n + n2

processes on a machine estimated to have n = 16 CPUs.

But in so far as it is a helpful guideline, function detectCores() try to determine the number
of CPU cores in the machine on which R is running: it has ways to do so on all known current
R platforms. What exactly it measures is OS-specific: we try where possible to report the
number of physical cores available. One OS where this is not the case is Windows, where only
the number of logical CPUs is readily available. On modern hardware (e.g. Intel Core i7 ) the
latter may not be unreasonable as hyper-threading does give a significant extra throughput:
on what are now rather old Pentium 4’s it will simply over-estimate by a factor of two. Note
that we said ‘available’: in most cases when virtual machines are in use what is reported is the
maximum number of virtual CPUs which can be used simultaneously by that VM.

On Solaris, we choose (unlike multicore) to give the number of physical CPUs. Modern Sparc
CPUs have 8-way ‘Chip Multi-Threading’: this enables the CPU to switch rapidly between
threads if there are cache misses but does not run threads in parallel.

3 Analogues of apply functions

By far the most common (direct) applications of packages multicore and snow have been to
provide parallelized replacements of lapply, sapply, apply and related functions.

As analogues of lapply there are

parLapply(cl, x, FUN, ...)

mclapply(X, FUN, ..., mc.cores)

where mclapply is not available on Windows and has further arguments discussed on its help
page. They differ slightly in philosophy: mclapply sets up a pool of mc.cores workers just
for this computation, whereas parLapply uses a less ephemeral pool specified by the object
cl created by a call to makeCluster (which inter alia specifies the size of the pool). So the
workflow is

cl <- makeCluster(<size of pool>)

# one or more parLapply calls

stopCluster(cl)

For matrices there are the rarely used parApply and parCapply functions, and the more com-
monly used parRapply, a parallel row apply for a matrix.

4 SNOW Clusters

Currently the package contains a copy of much of snow, and the functions it contains can also
be used with clusters created by snow.

Two functions are provided to create SNOW clusters, makePSOCKcluster (a streamlined version
of snow::makeSOCKcluster) and (except on Windows) makeForkCluster. They differ only in
the way they spawn worker processes: makePSOCKcluster uses Rscript to launch further copies
of R (on the same host or optionally elsewhere) whereas makeForkCluster forks the workers
(which thus inherit the environment of the current session).

These functions would normally be called via makeCluster.
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Both ‘stdout’ and ‘stderr’ of the workers are redirected, by default being discarded but they
can be logged using the outfile option.

5 Forking

Except on Windows, the package currently contains a copy of multicore: there a few names
with the added prefix mc, e.g. mccollect, mcexit, mcfork, mckill and mcparallel. (For
back-compatibility, functions parallel and collect are also exported: these names are easily
masked.)

Most of the functions provided are not intended to be used by end users, and they may not in
future be exported from the namespace.

There are copies of the higher-level functions mclapply and pvec: unlike the versions in multi-
core these default to 2 cores, but this can be controlled by setting options("mc.cores"), and
that takes its default from environment variable MC_CORES when the package is loaded.

One unexported function which might be useful is parallel:::isChild, which can be used to
prevent mclapply being called recursively.

6 Random-number generation

Some care is needed with parallel computation using (pseudo-)random numbers: the pro-
cesses/threads which run separate parts of the computation need to run independent (and
preferably reproducible) random-number streams. One way to avoid any difficulties is (where
possible) to do all the randomization in the master process: this is done in package boot (version
1.3-1 and later).

When an R process is started up it takes the random-number seed from the object .Random.seed
in a saved workspace or constructs one from the clock time (see the help on RNG: as from R 2.14.0
it also uses the process ID). Thus worker processes might get the same seed, either because a
workspace was restored or (in R < 2.14.0) because the workers were started at the same time:
otherwise these get a non-reproducible seed.

The alternative is to set separate seeds for each worker process in some reproducible way from
the seed in the master process. This is generally plenty safe enough, but there have been worries
that the random-number streams in the workers might somehow get into step. One approach is
to take the seeds a long way apart in the random-number stream: note that random numbers
taken a long (fixed) distance apart in a single stream are not necessarily (and often are not) as
independent as those a short distance apart. Yet another idea (as used by e.g. JAGS) is to use
different random-number generators for each separate run/process.

Package parallel contains an implementation of the ideas of L’Ecuyer et al. (2002): this uses
a single RNG and takes seeds 2127 apart in the random number stream (which has period
approximately 2191). This is based on the generator of L’Ecuyer (1999); the reason for choosing
that generator2 is that it has a fairly long period with a small seed (6 integers), and unlike R’s
default "Mersenne-Twister" RNG, it is simple to advance the seed by a fixed number of steps.

2apart from the commonality of authors!
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The generator is the combination of two:

xn = 1403580 × xn−1 − 810728 × xn−3 mod (232 − 209)

yn = 527612 × yn−1 − 1370589 × yn−3 mod (232 − 22853)

zn = (xn − yn) mod 4294967087

un = zn/4294967088 unless zn = 0

The ‘seed’ then consists of (xn, xn−1, xn−2, yn, yn−1, yn−2), and the recursion for each of xn and
yn can have pre-computed coefficients for k steps ahead. For k = 2127, the seed is advanced by
k steps by R call .Random.seed <- nextRNGStream(.Random.seed).

The L’Ecuyer (1999) generator is available in R as from version 2.14.0 via RNGkind("L’Ecuyer-

CMRG"). Thus using the ideas of L’Ecuyer et al. (2002) is as simple as

RNGkind("L'Ecuyer-CMRG")
set.seed(<something>)

## start M workers

s <- .Random.seed

for (i in 1:M) {

s <- nextRNGStream(s)

# send s to worker i as .Random.seed

}

and this is is implemented for SNOW clusters in function clusterSetRNGStream, and as part
of mcparallel and mclapply.

Apart from streams (2127 apart), there is the concept of sub-streams starting from seeds 276

steps apart.

A direct R interface to the (clunkier) original C implementation is available in CRAN package
rlecuyer (Sevcikova and Rossini, 2004–present). That works with named streams, each of which
have three 6-elements seeds associated with them, the original seed set for the package, the
initial seed set for the stream and the current seed for the stream. This can easily be emulated
in R by storing .Random.seed at suitable times. There is another interface using S4 classes in
package rstream (Leydold, 2005–present).

7 Extended examples

Probably the most common use of coarse-grained paralllelization in statistics is to do multiple
simulation runs, for example to do large numbers of bootstrap replicates or several runs of an
MCMC simulation. We show an example of each.

Note that some of the examples are not available on Windows and some actually are computer-
intensive.

7.1 Bootstrapping

Package boot (Canty and Ripley, 1999–present) is support software for the monograph by Davi-
son and Hinkley (1997). Bootstrapping is often used as an example of easy parallelization, and
some methods of producing confidence intervals require many thousands of bootstrap samples.
As from version 1.3-1 the package itself has parallel support within its main functions, but we
illustrate how use the original (serial) functions in parallel computations.
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We consider two examples using the cd4 dataset from package boot where the interest is in
the correlation between before and after measurements. The first is a straight simulation, often
called a parametric bootstrap. The non-parallel form is

> library(boot)

> cd4.rg <- function(data, mle) MASS::mvrnorm(nrow(data), mle$m, mle$v)

> cd4.mle <- list(m = mean(cd4), v = var(cd4))

> cd4.boot <- boot(cd4, corr, R = 999, sim = "parametric",

+ ran.gen = cd4.rg, mle = cd4.mle)

> boot.ci(cd4.boot, type = c("norm", "basic", "perc"),

+ conf = 0.9, h = atanh, hinv = tanh)

To do this with mclapply we need to break this into separate runs, and we will illustrate two
runs of 500 simulations each:

> library(boot)

> cd4.rg <- function(data, mle) MASS::mvrnorm(nrow(data), mle$m, mle$v)

> cd4.mle <- list(m = mean(cd4), v = var(cd4))

> mc <- 2

> run1 <- function(...) boot(cd4, corr, R = 500, sim = "parametric",

+ ran.gen = cd4.rg, mle = cd4.mle)

> library(parallel)

> ## To make this reproducible:

> set.seed(123, "L'Ecuyer"); mc.reset.stream()

> cd4.boot <- do.call(c, mclapply(seq_len(mc), run1) )

> boot.ci(cd4.boot, type = c("norm", "basic", "perc"),

+ conf = 0.9, h = atanh, hinv = tanh)

There are many ways to program things like this: often the neatest is to encapsulate the
computation on a function, so this is the parallel form of

> do.call(c, lapply(seq_len(mc), run1))

To run this with parLapply we could take a similar approach by

> run1 <- function(...) {

+ library(boot)

+ cd4.rg <- function(data, mle) MASS::mvrnorm(nrow(data), mle$m, mle$v)

+ cd4.mle <- list(m = mean(cd4), v = var(cd4))

+ boot(cd4, corr, R = 500, sim = "parametric",

+ ran.gen = cd4.rg, mle = cd4.mle)

+ }

> library(parallel)

> mc <- 2

> cl <- makeCluster(mc)

> ## make this reproducible

> clusterSetRNGStream(cl, 123)

> library(boot) # needed for c() method on master

> cd4.boot <- do.call(c, parLapply(cl, seq_len(mc), run1) )

> boot.ci(cd4.boot, type = c("norm", "basic", "perc"),

+ conf = 0.9, h = atanh, hinv = tanh)

> stopCluster(cl)

Note that whereas with mclapply all the packages and objects we use are automatically set in
the workers, this is not in general3 the case with the parLapply approach. There is often a

3it is with clusters set up with makeForkCluster.
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delicate choice of where to do the computations: for example we could compute cd4.mle on the
master and send the value to the workers, or (as here) compute it on the workers. We illustrate
that by the following code

> library(parallel)

> mc <- 2

> cl <- makeCluster(mc)

> cd4.rg <- function(data, mle) MASS::mvrnorm(nrow(data), mle$m, mle$v)

> cd4.mle <- list(m = mean(cd4), v = var(cd4))

> clusterExport(cl, c("cd4.rg", "cd4.mle"))

> junk <- clusterEvalQ(cl, library(boot)) # discard result

> clusterSetRNGStream(cl, 123)

> res <- clusterEvalQ(cl, boot(cd4, corr, R = 500,

+ sim = "parametric", ran.gen = cd4.rg, mle = cd4.mle))

> library(boot) # needed for c() method on master

> cd4.boot <- do.call(c, res)

> boot.ci(cd4.boot, type = c("norm", "basic", "perc"),

+ conf = 0.9, h = atanh, hinv = tanh)

> stopCluster(cl)

Running the double bootstrap on the same problem is far more computer-intensive. The stan-
dard version is

> library(boot)

> R <- 999; M <- 999 ## we would like at least 999 each

> cd4.nest <- boot(cd4, nested.corr, R=R, stype="w", t0=corr(cd4), M=M)

> op <- par(pty = "s", xaxs = "i", yaxs = "i")

> qqplot((1:R)/(R+1), cd4.nest$t[, 2], pch = ".", asp = 1,

+ xlab = "nominal", ylab = "estimated")

> abline(a = 0, b = 1, col = "grey")

> par(op)

> abline(h=0.05, col = "grey")

> abline(h=0.95, col = "grey")

> nominal <- (1:R)/(R+1)

> actual <- cd4.nest$t[, 2]

> 100*nominal[c(sum(actual <= 0.05), sum(actual < 0.95))]

which took about 55 secs on one core of an 8-core Linux server.

Using mclapply we could use

> library(parallel)

> library(boot)

> mc <- 9

> R <- 999; M <- 999; RR <- floor(R/mc)

> run2 <- function(...)

+ cd4.nest <- boot(cd4, nested.corr, R=RR, stype="w", t0=corr(cd4), M=M)

> cd4.nest <- do.call(c, mclapply(seq_len(mc), run2, mc.cores = 9) )

> nominal <- (1:R)/(R+1)

> actual <- cd4.nest$t[, 2]

> 100*nominal[c(sum(actual <= 0.05), sum(actual < 0.95))]

which ran in 11 secs (elapsed).
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7.2 MCMC runs

Ripley (1988) discusses the maximum-likelihood estimation of the Straus process, which is done
by solving a moment equation

EcT = t

where T is the number of R-close pairs and t is the observed value, 30 in the following example.
A serial approach to the initial exploration might be

> library(spatial)

> towns <- ppinit("towns.dat")

> tget <- function(x, r=3.5) sum(dist(cbind(x$x, x$y)) < r)

> t0 <- tget(towns)

> R <- 1000

> c <- seq(0, 1, 0.1)

> ## res[1] = 0

> res <- c(0, sapply(c[-1], function(c)

+ mean(replicate(R, tget(Strauss(69, c=c, r=3.5))))))

> plot(c, res, type="l", ylab="E t")

> abline(h=t0, col="grey")

which takes about 20 seconds today, but several hours when first done in 1985. A parallel
version might be

> run3 <- function(c) {

+ library(spatial)

+ towns <- ppinit("towns.dat") # has side effects

+ mean(replicate(R, tget(Strauss(69, c=c, r=3.5))))

+ }

> cl <- makeCluster(10, methods = FALSE)

> clusterExport(cl, c("R", "towns", "tget"))

> res <- c(0, parSapply(cl, c[-1], run3))

> stopCluster(cl)

which took about 4.5 secs, plus 2 secs to set up the cluster. Using a fork cluster (not on
Windows) makes the startup much faster and setup easier:

> cl <- makeForkCluster(10) # after the variables have been setup

> run4 <- function(c) mean(replicate(R, tget(Strauss(69, c=c, r=3.5))))

> res <- c(0, parSapply(cl, c[-1], run3))

> stopCluster(cl)

As one might expect, the mclapply version is slightly simpler:

> run4 <- function(c) mean(replicate(R, tget(Strauss(69, c=c, r=3.5))))

> res <- c(0, unlist(mclapply(c[-1], run3, mc.cores = 10)))
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