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Performing the Scott-Knott Clustering
Algorithm in R: the Package ScottKnott
Enio G. Jelihovschi and José Cláudio Faria

Abstract The test of Scott-Knott is a clustering
algorithm used as one of the alternatives where
multiple comparison procedures are applied, in
the ANOVA context, with a very important cha-
racteristic: it does not present any treatment
overlapping in its grouping results. We wrote a
code, in R, that performs this algorithm starting
from vectors, data.frame or aov objects. The re-
sults are presented in the usual way as well as in
graphical way using different colors to differen-
tiate among the distinct groups.

Introduction

A common problem in ANOVA is the experiment de-
signed to compare treatments. In the situation where
it leads to a significant F-test for the difference among
treatment means, there is the problem of isolating
those treatments that do not appear to be different.

All multiple comparison procedures proposed to
solve that problem (t-test, Tukey, Duncan, Newman-
Keuls procedures), usually divide the set of treat-
ment means in groups which are not completely dis-
tinct, many treatments end up belonging to diffe-
rent groups simultaneously, this is called overlap-
ping (Calinski and Corsten, 1985).

In fact, as the number of treatments increases, so
do the number of overlapping making it difficult for
the experimental users to distinguish the real groups
to which the treatments should belong. The division
of the treatments in completely distinct groups is the
most important solution in this case for them. Even
though the goal of multiple comparison methods is
an all-pair comparison, not a division of the treat-
ment means into groups, the biologists, plant bree-
ders and many others expect those tests to do that
for them.

The possibility of using cluster analysis in place
of multiple comparison procedures was suggested
by O’Neill and Wetherill (1971) since the results of
cluster analysis type of solution would divide the
treatments into distinct groups.

The Scott and Knott (SK) algorithm is a hierar-
chical cluster analysis approach used to partition the
treatments into distinct groups. Many other hier-
archical cluster analysis approaches have been pro-
posed since Scott, A.J. and Knott, M. (Scott and
Knott, 1974) published their results, as for example
Jollife (1975), Cox and Spjotvoll (1982), and Calinski
and Corsten (1985). However, the SK approach has
been the most widely used due to the simple intu-

itive appeal of its idea, and also the good results it al-
ways gives (Gates and Bilbro, 1978; Bony et al., 2001;
Dilson et al., 2002; Jyotsna et al., 2003).

The SK procedure uses a clever algorithm of clus-
ter analysis, where, starting from the whole group
of observed mean effects, it divides, and keep di-
viding the sub-groups in such a way that the in-
tersection of any two groups formed in that man-
ner is empty. Using A. J. Scott and M. Knott own
words: “we study the consequences of using a well-
known method of cluster analysis to partition the
sample treatment means in a balanced design and
show how a corresponding likelihood ratio test gives
a method of judging the significance of the difference
among groups obtained" (Scott and Knott, 1974).

Simulation studies show that the performance of
the SK procedure, compared to the multiple compar-
ison procedures cited above, is very good, and in
many cases even superior to them.

It should be noted that in spite of Hierarchi-
cal Cluster Analysis and Multiple Comparison being
different type of statistical procedures, the SK is used
by experimenters either one or the other way.

This paper illustrates the use of the ScottKnott
R package, which implements the SK procedure
(Scott and Knott, 1974). The package is avail-
able on the Comprehensive R Archive Network
(CRAN) website at http://CRAN.R-project.org/
package=ScottKnott.

The R Package ScottKnott is composed of two
methods, SK and SK.nest. The method SK performs
the algorithm on treatments of main factors and
SK.nest does the same on nested designs of facto-
rial, split-plot and split-split-plot experiments. They
return objects of class SK, and SK.nest containing the
groups of means plus other variables necessary for
summary and plot.

The generic functions summary and plot are used
to obtain and print a summary and a plot, where the
groups are indicated by their colors.

The SK clustering algorithm

Suppose we have a set of independent sample treat-
ment means in the analysis of variance context, each
treatment with the same number of replications, all
normal variates, that is a balanced design. Fur-
thermore, suppose that ANOVA leads to a signif-
icant F-test for the difference among the treatment
means. Moreover, by rejecting the homogeneity of
the treatment means there is a problem finding out
how many homogeneous groups there are and which
are the treatment means contained in each group.
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It should be noted that we follow (Calinski and
Corsten, 1985) in what we mean by homogeneity of
treatments: “Once more it should be borne in mind
that non rejection of equality is by no means equi-
valent to proving equality. We carefully defined ho-
mogeneity as nonrejection of equality. Nor it should
be inferred that treatments belonging to different
"homogeneous groups" are (significantly) different;
treatments belonging to the same group, however,
are not."

The SK procedure is a hierarchical clustering al-
gorithm which attempts to find out those groups
without overlapping.

Let k be the number of treatments. As it starts,
the SK procedure will either find two distinct groups
dividing the treatment means or will declare those
k treatment means a homogeneous belonging to just
one group. To do so it should look at the 2k−1 − 1
possible partitions of the k means into two nonempty
groups, but it is enough to look at the k − 1 parti-
tions formed by ordering the treatment means and
dividing them between two successive ones (Scott
and Knott, 1974). Let T1 and T2 be the totals of two of
those groups with k1 and k2 treatments in each one,
so that k1 + k2 = k, that is:

T1 =
k1

∑
i=1

y(i) T2 =
k1+k2

∑
i=k1+1

y(i)

Where y(i), i = 1 : m are the ordered treatment
means and y the grand mean (Ramalho et al., 2000).

Also, let B be the between groups sum of squares.
That is:

B =
T2

1
k1

+
T2

2
k1
− (T1 + T2)

2

k1 + k2

Let Bo be the maximum value, taken over the
k − 1 partitions of the k treatments into two groups,
of the between groups sum of squares B. After find-
ing out those groups we use the likelihood ratio
test for the null hypothesis of equality of all means
against the alternative that they belong to the two
groups found above. If we reject this hypothesis then
the two groups are kept, otherwise the group of k
treatment means is considered homogeneous. We
then repeat this procedure for each group separated
and stop until all the groups formed up to then are
homogeneous.

The statistics used for the likelihood ratio test is:

λ =
π

2(π − 2)
× Bo

σ2
o

where σ2
o is the maximum likelihood estimator of

σ2

r .

Let s2 = MSE
r be the unbiased estimator of σ2

r , υ
be degrees of freedom associated with that estimator,
then

σ2
o =

∑k
i=1(y(i)− y)2 + υs2

k + υ

λ is asymptotically a χ2 distributed random vari-
able with υo =

k
π−2 degrees of freedom. Therefore we

can use that to set the cutoff point for a given α value
each time we perform the test.

We can think the p-value of likelihood ratio test as
a distance to be measured between the two selected
groups and the chosen type I error (α value) to be the
cut off. If the p-value is smaller than α the groups are
too far away from each other and should be separa-
ted (they are heterogeneous) otherwise, they become
just one group (homogeneous).

“Choosing an appropriate value for α is difficult.
If α is too small, the splitting process will terminate
too soon, while if α is too large, the process will go
too far and split homogeneous sets of means" (Scott
and Knott, 1974).

As we start dividing the first groups into other
smaller groups, we repeat the same algorithm for
each group. We keep doing that until every group
formed in this way is either homogeneous or just
contains one observed mean.

It is important to emphasize the fact that the α
value defined above is not the nominal error rate of
the type I error of the algorithm as a whole. If we set
the α value to be 5% then every test the SK procedure
performs to divide or not a sub-group has a type I er-
ror rate of 5% but we cannot say that the former type
I error rate is 5%. This α value is the parameter called
sig.level in the SK function.

In performance studies among statistical tests is
often very difficult to obtain analytically their rate
of type I error and power. The most usual way
to get that information is through simulation using
Monte Carlo methods. Boardman and Moffit (1971)
show that the difference between analytical values
and Monte Carlo’s is very small therefore making its
use an optimal way to get the necessary information.
Their results are similar to those found by Bernhard-
son (1975).

In spite of the SK being a clustering procedure
we can use simulation results to compare its perfor-
mance to Tukey test and others, as if it were a multi-
ple comparison procedure.

Comparative performance of SK
method

It is very difficult to compare the type I error rates
(Carmer and Swanson, 1971) in multiple compar-
isons procedures. Two of the most common mea-
sures found in the literature are:

• The ratio between the number of type I errors
(reaching the result that µi 6= µj when truly
µi = µj ) and the number of comparisons is de-
fined as comparisonwise error rate.
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• The ratio between the number of experiments
with one or more type I errors and the to-
tal number of experiments is defined as experi-
mentwise error rate (Carmer and Swanson, 1971;
Steel and Torrie, 1980).

Two simulation studies (Boardman and Moffit,
1971; Bernhardson, 1975) conducted at the Univer-
sidade Federal de Lavras, Brazil, used Monte Carlo
methods to evaluate the performance of the SK
method. One Da Silva et al. (1999) has shown that it
possesses high power and error rate almost always in
accordance with the nominal levels using both com-
parisonwise and experimentwise error rates. That
is, the rates are not far from α value cited above.
The other, Borges and Ferreira (2003) evaluated the
power and the type I error rates of the SK, Tukey
and SNK test, in a wide variety of experimental situ-
ations, in conditions of normality and non-normality
error distribution. They concluded that the SK is
more powerful than the other two and is also ro-
bust against violations of normality assumptions.
Both performed 2000 simulations for each experi-
ment with 5, 10, 20 and 80 treatments with 4, 10 and
20 replications α value of 1% and 5% plus coefficients
of variation 1%, 10%, 20% and 30%.

The ScottKnott package

The package ScottKnott was written in R language
(R Development Core Team, 2010). It’s results are
objects of the class list, SK and SK.nest, which are
used as input to the generic functions summary and
plot.

The ScottKnott package performs the clustering
algorithm on three designs and three experiments. It
must be emphasized again that the two functions SK
and SK.nest work only on balanced designs.

The designs are: Completely Randomized Design
(CRD), Randomized Complete Block Design (RCBD)
and Latin Squares Design (LSD). The experiments
are: Factorial Experiment (FE), Split-Plot Experiment
(SPE) and Split-Split-Plot Experiment (SSPE) .

The package ScottKnott has two main functions,
SK and SK.nest. The function SK is used for cluster-
ing treatment means of a main factor. The function
SK.nest is used for clustering treatment means of in-
teraction among factors, that is whenever the treat-
ment means belong to a factor nested in others. For
example the treatment means of factor A for level 1 of
factor B and level 1 of factor C. The function SK.nest
supports at most two nestings as shown above.

The function summary generates an output where
the different groups are shown by using letters of
the alphabet. The plot function generates distinct
groups differentiated by colors.

The main algorithm is the function MaxValue
which builds groups of means according to the

method of SK. Basically it is an algorithm for pre-
order path in a binary decision tree. Every node of
this tree, represents a different group of means and,
when the algorithm reaches this node it takes the
decision to either split the group in two, or form a
group of means. At the end all the leaves of the tree
are the groups of homogeneous means.

The functions SK and SK.nest are methods for ob-
jects of class vector, matrix or data.frame joined as
default, and aov and aovlist for single experiments.

The main parameters used by those methods are:

• x: A design matrix, data.frame or an aov ob-
ject.

• y: A vector of response variable. It is necessary
to inform this parameter only if x represent the
design matrix.

• which: The name of the factor to be used in the
clustering. The name must be inside quoting
marks.

• model: If x is a data.frame object, the model to
be used in the aov must be specified.

• error: The error to be considered. Used only in
case of split-plot or split-split-plot experiments.

• sig.level: Level of Significance, α value, used
in the SK and SK.nest algorithms to create the
groups of means. The default value is 0.05.

• f l2: A vector of length 1 giving the level of the
second factor in nesting order tested.

• f l3: A vector of length 1 giving the level of the
third factor in nesting order tested.

• id.trim: The number of characters to trim the
label of the factor levels.

• . . . : Further arguments (required by generic).

The function SK returns an object of class SK, the
function SK.nest returns an object of class SK.nest,
respectively, containing the groups of means plus
other necessary variables for summary and plot.

The generic functions summary and plot are used
to obtain and print a summary and a plot of the re-
sults.

The method plot.SK plots both: SK and SK.nest
objects. The parameters are:

• x: A SK object.

• pch: A vector of plotting symbols or characters.

• col: A vector of colors for the means represen-
tation.

• xlab: A label for the x axis.

• ylab: A label for the y axis.

• xlim: The x limits of the plot.

• ylim: The y limits of the plot.
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• id.lab: Factor level names at x-axis if the user
wants them changed, otherwise it will appear
as specified at the original data.

• id.las: Factor level names written either hori-
zontally or vertically.

• rl: Horizontal line connecting the circle to the
y-axis.

• rl.lty: Line type of rl.

• rl.col: Line color of rl.

• mm: Vertical line through the circle (mean
value) linking the minimum to the maximum
of the factor level values corresponding to that
mean value.

• mm.lty: Line type of mm.

• title: A title for the plot.

• . . . : Optional plotting parameters.

All data used in the examples are in data set of
the ScottKnott package.

Using ScottKnott package

The following are some examples on how to use
the ScottKnott package. All the following examples
show how to run the SK (SK.nest) function from an
aov object.

Completely Randomized Design (CRD)

CRD2 is the objet containing the data set of com-
pletely randomized design. It can be called using the
command below:

> library(ScottKnott)
> data(CRD2)

It is a simulated data to model a CRD of 45 levels
(treatments) and 4 repetitions.

> sk0 <- with(CRD2, SK(x = x, y = y,
+ model = "y ~ x", which = "x",
+ id.trim = 5))
> plot(sk0, id.las = 2, rl = FALSE,
+ title = "")

Figure 1: Completely Randomized Design (CRD),
α = 5%.

Randomized Completely Block Design
(RCBD)

RCBD is the objet containing the data set of randomi-
zed completely block design. It can be called using
the command below:

> data(RCBD)

It is a simulated data to model a RCBD of 5 factor
levels and 4 blocks.

> av1 <- with(RCBD, aov(y ~ blk + tra,
+ data = dfm))

> sk1 <- SK(x = av1, which = "blk")
> summary(sk1)

Levels Means SK(5%)
1 145.496 a
2 143.916 a
3 143.264 a
4 139.994 a

> plot(sk1, pch = 15, id.lab = paste("Block",
+ 1:length(sk1$groups), sep = "_"),
+ rl = FALSE, title = "")

Figure 2: Randomized Completely Block Design
(RCBD). Main factor is block, α = 5%.
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> sk2 <- SK(x = av1, which = "tra",
+ sig.level = 0.1)
> summary(sk2)

Levels Means SK(10%)
E 155.3700 a
A 142.9325 b
D 140.3950 b
B 138.5750 b
C 138.5650 b

> plot(sk2, xlab = "", rl = FALSE, title = "")

Figure 3: Randomized Completely Block Design
(RCBD). Main factor is treatment, α = 10%.

Factorial Experiment (FE)

FE is the objet containing the data set of a factorial
experiment. It can be called using the command be-
low:

> data(FE)

It is a simulated data set to model a FE with 3 fac-
tors, 2 levels per factor and 4 blocks.

> nav1 <- with(FE, aov(y ~ blk + N *
+ P * K, data = dfm))

Main factors

> nsk1 <- SK(nav1, which = "N")
> summary(nsk1)

Levels Means SK(5%)
n1 2.750000 a
n0 2.306875 b

> plot(nsk1, rl = FALSE, title = "")

Figure 4: Factorial Experiment (FE). Main factor is N,
α = 5%.

Nested factors

When comparison among means of a factor nested in
another one, the function SK.nest must be used. In
this case the two parameters f l2 (factor level 2) and
f l3 (factor level 3) take values depending on which
level we choose to study. Figure 5 shows that the
factor P is nested in factor K, and it is desired to com-
pare the means of P when K = 2 ( f l2 = 2). In that
case K is factor 2. By default, whenever the number
of nestings is just one, f l3 = 0.

> nsk2 <- SK.nest(nav1, which = "P:K",
+ fl2 = 2)
> summary(nsk2)

Nested: P/K
Levels Means SK(5%)

P_1/K_2 2.83375 a
P_2/K_2 2.62125 a

> plot(nsk2, rl = FALSE, title = "")

Figure 5: Factorial Experiment (FE). Factor P is
nested into level 2 of factor K, α = 5%.

Figure 6 shows factor N nested in factor P which
is nested in factor K, and it is desired to compare the
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means of N when P = 1 ( f l2 = 1) and K = 2 ( f l3 = 2).
In that case P is factor 2 ( f l2) and K is factor 3 ( f l3).

> nsk3 <- SK.nest(nav1, which = "N:P:K",
+ fl2 = 1, fl3 = 2)
> plot(nsk3, rl = FALSE, title = "")

Figure 6: Factorial Experiment (FE). Nesting factor N
into level 1 of factor P which is nested into level 2 of
factor K, α = 5%.

Changing the nesting order of factors, the follow-
ing is the way to do it:

> nav2 <- with(FE, aov(y ~ blk + K *
+ N * P, data = dfm))
> nsk4 <- SK.nest(nav2, which = "K:N:P",
+ fl2 = 1, fl3 = 1)
> summary(nsk4)

Nested: K/N/P
Levels Means SK(5%)

K_2/N_1/P_1 2.9375 a
K_1/N_1/P_1 1.8850 b

> plot(nsk4, rl = FALSE, title = "")

Figure 7: Factorial Experiment (FE). Nesting factor K
into level 1 of factor N which is nested into level 1 of
factor P, α = 5%.

Split-Split-Plot Experiment (SSPE)

SSPE is the objet containing the data set of a Split-
Split-Plot Experiment (SSPE). It can be called using
the command below:

> data(SSPE)

It is a simulated data to model a SSPE with 3
plots, each one split 3 times, each split, split again
5 times and 4 repetitions per split-split.

From aovlist object:

> nav3 <- with(SSPE, aov(y ~ blk + ssp *
+ sp * p + Error(blk/p/sp), data = dfm))

Nested, sp/p=2

The factor sp is nested in factor p.

> nsk5 <- SK.nest(nav3, which = "sp:p",
+ error = "blk:p:sp", fl2 = 2)
> plot(nsk5, rl = FALSE, title = "")

Figure 8: Split-Split-Plot Experiment (SSPE), nested
analysis (sp/p=2), α = 5%.

Nested, ssp/sp=1/p=1

The factor ssp is nested in factor sp which is nested
in factor p. The value 1 of the parameter f l2 and 1
of parameter f l3 mean that the first level of factor p
and factor sp, respectively, are chosen. The compari-
son is made only among levels (treatments) of factor
ssp belonging to that particular combination of levels
of factor p and factor sp. Look at the aov(model) and
SK.nest (which) functions for the order at which the
factors appear.

> nsk6 <- SK.nest(nav3, which = "ssp:sp:p",
+ error = "Within", fl2 = 1, fl3 = 1)
> summary(nsk6)

Nested: ssp/sp/p
Levels Means SK(5%)

ssp_5/sp_1/p_1 456.3500 a
ssp_4/sp_1/p_1 438.9850 a
ssp_3/sp_1/p_1 392.0725 a
ssp_2/sp_1/p_1 349.3500 b
ssp_1/sp_1/p_1 294.6800 b

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859



CONTRIBUTED ARTICLE 7

> plot(nsk6, rl.col = c(rep("black",
+ 3), rep("red", 2)), title = "")

Figure 9: Split-Split-Plot Experiment (SSPE). Nested
analysis (ssp/sp=1/p=1), α = 5%.

Further examples are documented in the folder
demo of the R-package ScottKnott.
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