[R-br] componente da variância no modelo de efeitos aleatórios
Walmes Zeviani
walmeszeviani em gmail.com
Seg Dez 2 12:40:06 -02 2019
Respostas dentro da mensagem.
À disposição.
Walmes.
On Thu, Nov 28, 2019 at 2:49 PM Luiz Leal <richfield1974 em yahoo.com> wrote:
> Prezado Walmes, muito obrigado.
>
>
> Pelo que entendi não é possível "sigma^2_b" e "sigma^2_e" utilizando a
> função gls().
>
Não. Tem-se que usar um modelo de efeitos aleatórios.
>
> A função VarCorr(modelo2) fornece "sigma^2_b" e "sigma^2_e", correto?
>
Sim. Mas a interpretação é mais específica. "sigma^2_e" é a variância do
erro ao redor do ponto médio da curva em um ponto específico do suporte da
covariável que eu imagino ser o 0. A variância em outros pontos da curva
será outra, obviamente, porque você declarou um modelo heterocedástico.
# Média ajustada.
m <- unique(fitted(modelo2))
# Modelo ajustado.
plot(y ~ as.integer(x))
lines(m ~ seq_along(m))
# Variância estimada é função da média.
# s2(v) = exp(2* t * v)
var_estim <- 6041.676 * exp(2 * 0.0009743905 * m)
var_amost <- tapply(y, x, var)
cbind(var_amost, var_estim)
# Resíduos crus e padronizados.
plot(residuals(modelo2) ~ fitted(modelo2))
plot(residuals(modelo2, type = "pearson") ~ fitted(modelo2))
# Calculando o resíduo padronizado.
r_my <- residuals(modelo2)/
sqrt(6041.676 * exp(2 * 0.0009743905 * fitted(modelo2)))
# Comparação.
cbind(r_my, residuals(modelo2, type = "pearson"))
> Variance StdDev
> (Intercept) 667641.149 817.09311
> Residual 6041.696 77.72834
>
> Tenho uma dúvida: a variância do intercepto é "sigma^2_b"?
>
Sim.
>
> Muito obrigado. Sua contribuição está sendo muito válida no meu trabalho.
> Luiz
>
-------------- Próxima Parte ----------
Um anexo em HTML foi limpo...
URL: <http://listas.inf.ufpr.br/pipermail/r-br/attachments/20191202/dd6d9154/attachment.html>
Mais detalhes sobre a lista de discussão R-br