[R-br] arquivo .rmd - Grafico da rede neural não aparece
Leonard de Assis
assis.leonard em gmail.com
Sexta Janeiro 22 15:16:00 BRST 2016
Título da msg explica
> sessionInfo()
R version 3.2.3 (2015-12-10)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)
locale:
[1] LC_COLLATE=Portuguese_Brazil.1252 LC_CTYPE=Portuguese_Brazil.1252
[3] LC_MONETARY=Portuguese_Brazil.1252 LC_NUMERIC=C
[5] LC_TIME=Portuguese_Brazil.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] nnet_7.3-11 caret_6.0-64 ggplot2_2.0.0.9001
lattice_0.20-33
[5] mlbench_2.1-1 RevoUtilsMath_3.2.3
loaded via a namespace (and not attached):
[1] Rcpp_0.12.3 compiler_3.2.3 nloptr_1.0.4 plyr_1.8.3
[5] iterators_1.0.8 tools_3.2.3 digest_0.6.9 lme4_1.1-10
[9] nlme_3.1-124 gtable_0.1.2 mgcv_1.8-10
Matrix_1.2-3
[13] foreach_1.4.3 yaml_2.1.13 parallel_3.2.3 SparseM_1.7
[17] stringr_1.0.0.9000 knitr_1.12 MatrixModels_0.4-2
stats4_3.2.3
[21] grid_3.2.3 rmarkdown_0.9.4 minqa_1.2.4
reshape2_1.4.1.9000
[25] car_2.1-1 magrittr_1.5 scales_0.3.0
codetools_0.2-14
[29] htmltools_0.3 MASS_7.3-45 splines_3.2.3
rsconnect_0.4.1.4
[33] pbkrtest_0.4-5 colorspace_1.2-6 quantreg_5.19
stringi_1.0-1
[37] munsell_0.4.2
>
____ código
---
title: "Neural Network example"
author: "Leonard Mendonça de Assis"
date: "21 de janeiro de 2016"
output:
pdf_document:
highlight: pygments
number_sections: yes
html_document:
highlight: pygments
number_sections: yes
word_document:
highlight: pygments
---
# Session start
```{r}
require(MASS)
require(neuralnet)
require(plyr)
require(boot)
require(knitr)
data <- Boston
kable(head(data))
kable(
apply(data,2,function(x) sum(is.na(x))),
caption='NAs per variables'
)
```
# Adjusting a linear model
```{r}
set.seed(500)
index <- sample(1:nrow(data),round(0.75*nrow(data)))
train <- data[index,]
test <- data[-index,]
lm.fit <- glm(medv~., data=train)
summary(lm.fit)
pr.lm <- predict(lm.fit,test)
MSE.lm <- sum((pr.lm - test$medv)^2)/nrow(test)
```
# Adjusting a Neural Net
As a first step, we are going to address data preprocessing. It is good
practice to normalize your data before training a neural network. I cannot
emphasize enough how important this step is: depending on your dataset,
avoiding normalization may lead to useless results or to a very difficult
training process (most of the times the algorithm will not converge before
the number of maximum iterations allowed). You can choose different methods
to scale the data (z-normalization, min-max scale, etc
). I chose to use the
min-max method and scale the data in the interval [0,1].
Usually scaling in the intervals [0,1] or [-1,1] tends to give better
results. We therefore scale and split the data before moving on:
```{r}
maxs <- apply(data, 2, max)
mins <- apply(data, 2, min)
scaled <- as.data.frame(scale(data, center = mins, scale = maxs - mins))
train_ <- scaled[index,]
test_ <- scaled[-index,]
```
Note that scale returns a matrix that needs to be coerced into a data.frame.
```{r}
n <- names(train_)
f <- as.formula(paste("medv ~", paste(n[!n %in% "medv"], collapse = " + ")))
nn <- neuralnet(f,data=train_,hidden=c(5,3),linear.output=T)
```
And the Neural Nework looks like this:
```{r}
plot(nn)
```
```{r}
sessionInfo()
```
-------------- Próxima Parte ----------
Um anexo em HTML foi limpo...
URL: <http://listas.inf.ufpr.br/pipermail/r-br/attachments/20160122/407c9b4c/attachment.html>
-------------- Próxima Parte ----------
Um anexo não-texto foi limpo...
Nome: image001.png
Tipo: image/png
Tamanho: 7861 bytes
Descrição: não disponível
URL: <http://listas.inf.ufpr.br/pipermail/r-br/attachments/20160122/407c9b4c/attachment.png>
Mais detalhes sobre a lista de discussão R-br