[R-br] Resolver Equação exponencial
Paulo Dick
paulopcdick em gmail.com
Quarta Abril 29 13:29:09 BRT 2015
Olá Alessandro e demais colegas.
Você pode usar o optim para encontrar a solução aproximada. Acredito que
haja uma solução mais simplificada, mas essa resolve o problema e pode ser
generalizada para outras situações:
# Define os valores dos parametros que voce tem como conhecidos
b0=1
b1=1
b2=1
b3=1
b4=1
b5=1
s=1
id1=1
ab1=1
# Define expressao como funcao de x
der=function(x) {
exp(b0 + b1/s + b2/x + b3 * (id1/x) * log(ab1) + b4 * (1 - id1/x) +b5 *
(1 - id1/x) * s) * (b4 * (id1/x^2) - (b3 * (id1/x^2) *log(ab1) + b2/x^2) +
b5 * (id1/x^2) * s)/x - exp(b0 + b1/s +b2/x + b3 * (id1/x) * log(ab1) + b4
* (1 - id1/x) + b5 *(1 - id1/x) * s)/x^2
}
# Caso queira fazer o gráfico
curve(der(x))
# Função para otimizar. 1 é o valor inicial, e o fnscale=-1 serve para ele
maximizar
optim(1, der, method="BFGS", control=list(fnscale=-1))
$par
[1] 0.2928928
$value
[1] 50.55462
$counts
function gradient
29 8
$convergence
[1] 0
$message
NULL
*Paulo Dick*
Estatístico
Mestrando em Epidemiologia em Saúde Pública
Tel.: (55 21) 99591-2716
Em 28 de abril de 2015 23:35, <aalmeidaalessandro em gmail.com> escreveu:
> Como posso resolver essa equação sendo que sei os valores dos betas,
> id1,ab1 e s, quero achar o valor de x. (Não sei se é função solve ou outra
> função).
> der= expression(exp(b0 + b1/s + b2/x + b3 * (id1/x) * log(ab1) + b4 * (1 -
> id1/x) +b5 * (1 - id1/x) * s) * (b4 * (id1/x^2) - (b3 * (id1/x^2) *log(ab1)
> + b2/x^2) + b5 * (id1/x^2) * s)/x - exp(b0 + b1/s +b2/x + b3 * (id1/x) *
> log(ab1) + b4 * (1 - id1/x) + b5 *(1 - id1/x) * s)/x^2)
>
> Desde já agradeço!
>
>
> _______________________________________________
> R-br mailing list
> R-br em listas.c3sl.ufpr.br
> https://listas.inf.ufpr.br/cgi-bin/mailman/listinfo/r-br
> Leia o guia de postagem (http://www.leg.ufpr.br/r-br-guia) e forneça
> código mínimo reproduzível.
>
-------------- Próxima Parte ----------
Um anexo em HTML foi limpo...
URL: <http://listas.inf.ufpr.br/pipermail/r-br/attachments/20150429/e119d69c/attachment.html>
Mais detalhes sobre a lista de discussão R-br