[R-br] multcomp/doBy comparação multipla com interação
Walmes Zeviani
walmeszeviani em gmail.com
Segunda Dezembro 3 22:14:34 BRST 2012
Isso que aconteceu com você acontece com frequência. Veja, sua interação
foi significativa à 4%
Sum Sq Df F value Pr(>F)
(Intercept) 1254528000 1 301.3933 < 2e-16 ***
Gest 39011053 3 3.1241 0.04044 *
Manej 28043758 1 6.7374 0.01448 *
Gest:Manej 39571188 3 3.1689 *0.03859 **
Residuals 124872833 30
Bem, agora você vai fazer comparações duas à duas. O seu número de
hipóteses avaliadas é grande pois você fará k(k-1)/2 contrastes, onde k é o
número de níveis. Quando eleva-se o número de hipóteses eleva-se também a
chance de erro tipo I. Se cada hipótese tem 95% de confiança (ou 5% de
significância), ao testar 10 hipóteses *independentes*, a chance de *pelo
menos uma* ser significativa por mero acaso é 1-0.95^10=0.40, ou seja, bem
distante do 5%. Ou seja, o nível de significância global fica longe do
nominal. Para contornar isso faça a engenharia inversa, quanto deve ser
nível individual para o global ser 5%?
Diversos tipos de testes de comparação multipla existem justamente para
fazer essa engenharia inversa (Tukey, SNK, t protegido por Bonferroni,
etc). Cada um deles procura resolver o mesmo problema: a manutenção do
nível global de significância para comparações múltiplas. A glht() faz
correção nos p-valores dos testes t. Vários métodos estão disponíveis e o
padrão é o single-step. Mudar o método muda o apelo e consequentemente o
rigor, uns serão mais liberais (tenderão a dar mais diferenças) que outros.
Quando você pega p-valores do F perto do 5%, como no seu caso, se o número
de comparações for grande (6 no seu caso), existe chance de não haver
diferenças. Por exemplo, para ser significativo pelo critério de
Bonferroni, o nível individual de cada teste t teria que ser inferior à
5%/6=0.833, ou seja, uma hipótese individual tem que ser significativa à 1%
para representar 5% no global.
É natural você pagar esse preço, afinal, você tá testando várias hipóteses.
Sou dono de uma barraca de tiro ao alvo numa feira. O prêmio é R$ 10 se
acertar o alvo com 3 tentativas. Se você diz "quanto eu ganho se eu acertar
com 10 tentativas?", lógico que não vou te pagar R$ 10. Pagaria bem menos,
você terá muito mais chances. Tenho que manter a esperança matemática no
mesmo lugar.
Você pode trocar a opção de correção de p-valor para que veja diferenças
mas não é recomendado fazer. Os testes de hipótese bem como as hipóteses
devem ser definidos antes do experimento/análise dos dados e não decididos
durante análise para favorecer certos resultados. Em caráter exploratório,
você pode fazer o teste à 10% para recomendar estratégias/selecionar níveis
para realizar um experimento futuro.
X1 <- popMatrix(C, effect="Gest", at=list(Manej="1"))
X2 <- popMatrix(C, effect="Gest", at=list(Manej="2"))
cb <- combn(nrow(X), 2)
Xc1 <- X1[cb[1,],]-X1[cb[2,],]
Xc2 <- X2[cb[1,],]-X2[cb[2,],]
summary(glht(C, linfct=Xc1))
summary(glht(C, linfct=Xc2))
summary(glht(C, linfct=Xc1), test=adjusted(*type="none"*))
summary(glht(C, linfct=Xc2), test=adjusted(*type="none"*))
> summary(glht(C, linfct=Xc1))
Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)
1 == 0 -180 1290 -0.139 0.9990
2 == 0 -1760 1290 -1.364 0.5307
3 == 0 -3710 1369 -2.711 0.0508 .
4 == 0 -1580 1290 -1.224 0.6163
5 == 0 -3530 1369 -2.579 0.0680 .
6 == 0 -1950 1369 -1.425 0.4940
(Adjusted p values reported -- *single-step method*)
> summary(glht(C, linfct=Xc1), test=adjusted(type="none"))
Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)
1 == 0 -180 1290 -0.139 0.890
2 == 0 -1760 1290 -1.364 0.183
3 == 0 -3710 1369 -2.711 0.011 *
4 == 0 -1580 1290 -1.224 0.230
5 == 0 -3530 1369 -2.579 0.015 *
6 == 0 -1950 1369 -1.425 0.165
(Adjusted p values reported -- *none method*)
À disposição.
Walmes.
==========================================================================
Walmes Marques Zeviani
LEG (Laboratório de Estatística e Geoinformação, 25.450418 S, 49.231759 W)
Departamento de Estatística - Universidade Federal do Paraná
fone: (+55) 41 3361 3573
VoIP: (3361 3600) 1053 1173
e-mail: walmes em ufpr.br
skype: walmeszeviani
twitter: @walmeszeviani
homepage: http://www.leg.ufpr.br/~walmes
linux user number: 531218
==========================================================================
-------------- Próxima Parte ----------
Um anexo em HTML foi limpo...
URL: <http://listas.inf.ufpr.br/pipermail/r-br/attachments/20121203/5351f5d8/attachment.html>
Mais detalhes sobre a lista de discussão R-br